Adaptive Learning Technology to Teach Background Material in Intro STEM

Colleen Richardson University of Pennsylvania – Center for Teaching & Learning STEM Education Postdoctoral Fellow

In your experience...

- What are common challenging background topics in your field?
- How would you confirm/identify them in a course?

Finding Topics

Finding Topics

- personal experiences
 - professor input
 - previous experiences in course and related courses

course data

- existing exams
- entry/exit assessments

Question						Total
S12 – Q17	а	b	С			
	67%	88%	86%			80%
S15 – Q6	а	b	С	d	е	
	95%	82%	89%	60%	74%	81%

Finding Topics: Neuroscience

Finding Topics: Neuroscience

- diffusion
- membrane permeability
- electrical properties

Finding Topics: Chemistry

Entry Assessment

- using Avogadro's number (24% correct)
- limiting reactant (6%)
- electrostatic energy scaling with charge and distance (<5%)
- multiplication and division of measurements (<5%)
- using ideal equation of state (10%)

Exams

- unit conversion (20% correct)
- molecular formula from elemental analysis (32%)
- ideal gas model and law (60%)
- lattice energy (50%)

Finding Topics: Chemistry

- unit conversion / dimensional analysis
 - using Avogadro's number
 - limiting reactant
 - multiplication and division of measurements
- ratios / direct and inverse relationships
 - ideal gas law / ideal equation of state
 - electrostatic energy scaling
 - lattice energy

Understanding Challenges

Continuing the discussion...

- Thinking about the background topics you identified earlier, select one topic and think about what could be the underlying difficulties/missing pieces?
- How would you distinguish the underlying problems?

Understanding Challenges

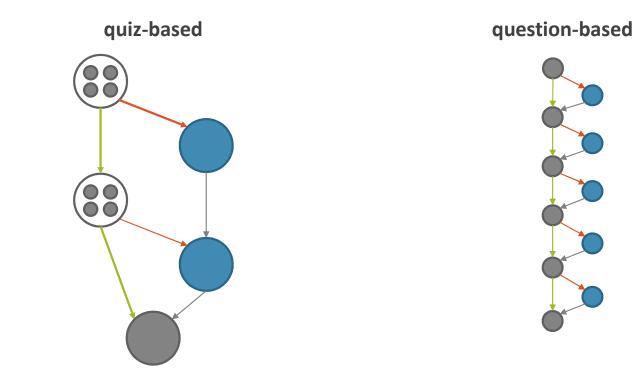
- how vs. why
 - Can a student set up and solve the problem? Does a student remember the correct answer?
 - Does a student understand why they used a given setup to solve the problem? Can a student explain why they gave a certain answer?

- context: original vs. new
 - Can a student recognize and solve the problem in the context they originally learned it?
 - Does a student recognize the previously learned material when it appears in a new setting?

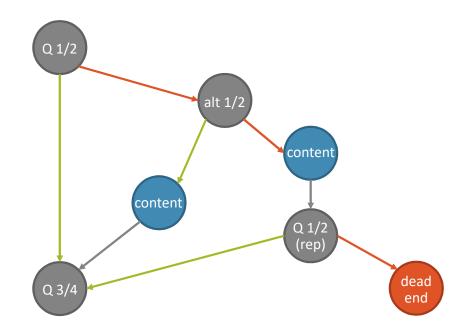
- Q3: During the process of diffusion, particles will generally move from
 - high to low concentration. (98%)
 - low to high concentration.
- Q4: The reason for my answer is because
 - crowded particles want to move to an area with more room.
 - the random motion of particles suspended in a fluid results in their uniform distribution. (31%)
 - the particles tend to keep moving until they are uniformly distributed and then they stop.
 - there is a greater chance of the particles repelling each other.

Understanding Challenges: *How vs. Why* Neuroscience

Understanding Challenges: *Context* Chemistry


- dimensional analysis / unit conversion
 - unit conversion (g \leftrightarrow mol) / using Avogadro's number: 20%
 - simplify ratio / quotient rule: >90%
- ratios / direct and inverse relationships
 - ideal gas law / lattice energy: 50-60%
 - direct and inverse relationships: ?

Design & Deployment


Design & Deployment

- technology concerns
 - branching pathways
 - in-house design and control
 - ease of use

Design & Deployment: Storyboard

Design & Deployment: Example

Design & Deployment

Penn	BBB 109 - BACKGROUND MODULE	Force Adaptivity 😫 Colleen Richardson 🗮
Screen List		
1. Intro		
2. biology understanding		
3. diffusion topic understanding	PART 1	
4. Q 1/2 - simple diffusion	If a small amount of salt (1 tsp) is added to a large container of water (4 liters or 1 gal) and allowed to sit for several days without stirring, the salt molecules will	
5. alt 1/2 - simple diffusion	be more concentrated at the bottom of the container.	•
6. tutorial A - ions into solution	The reason for my answer is because	® (
7. tutorial B - diffusion	salt is heavier than water and will sink.	
8. Q 1/2 (repeat) - simple diffusion	sait dissolves poorly or not at all in water.	
9. alternate end point	there will be more time for settling.	
10. Q 3/4 - semi- permeable membranes	 there is movement of particles from a high to low concentration. 	
11. alt 3/4 - semi- permeable membranes		
12. tutorial C - semi- permeable membranes		
13. Q 7/8 - membranes		
14. Q 9/10 - membranes		
15. Q 11/12 - membranes		
16. tutorial D - diffusion of different molecules		
17. Q 13/14 - plasma membranes		
18. tutorial E - plasma membranes and ions		
19. Q 15 - plasma membranes		
20. annuar 0.15		
		() HELP

Design & Deployment: Your Turn

- How would you design a module for the topic you identified earlier?
- What would your storyboard look like?

Lessons Learned (so far)

- plan everything (as much as possible) before building
- consider what type of data you want at the end
- let someone try to break it
- (if applicable) add in questions about student background, confidence, perceived help from module

Questions?