3.0 Optional Knowledge Units

3.1	Advanced	Cryptography
~	I I G I GII C G	

3.2

The intent of this Knowledge Unit is to provide students with knowledge of cryptographic algorithms, protocols, and their uses in the protection of information in various states.

3.1.1	Topic(s):
	Number Theory
	Probability and Statistics
	Understanding of the major algorithms (AES, RSA, EC)
	Suite B Algorithms
	Understanding of the families of attacks (differential, man-in-the-middle, linear, etc.)
	Hashing and Signatures
	Key Management
	Modes and appropriate uses
	Classical Cryptanalysis (a la Konheim)
	Identity-based Cryptography
	Digital Signatures
	Virtual Private Networks
	Quantum Key Cryptography
3.1.2	Outcome(s):
	Students will be able to:
	Describe how various cryptographic algorithms and protocols work.
	Evaluate security mechanisms based on cryptography.
	Describe the application of cryptography in SSL, virtual private networks, secure storage, and
	other security applications.
	Take a mode or protocol diagram and identify how an error propagates through the
	cryptosystem.
Adva	anced Network Technology & Protocols
	attent of this Knowledge Unit is to provide students with an understanding of the latest network
	ologies and more complex security issues involved in network communications. Examples include (but
	nited to): software defined networking, converged voice/data networking.
3.2.1	
3.2.1	Topic(s): *Pouting algorithms and protocols
	*Routing algorithms and protocols
	Software Defined Networking
	Principles, protocols, implications Due Networking Suits
	IPv6 Networking Suite
	BGP
	Quality of Service
	Network Services
	Social Networks
	Network Topologies
	Voice over IP (VoIP)
	Multicasting
	*Advanced Network Security Topics
	Secure DNS, Network Address Translation, Deep Packet Inspection, Transport Layer
	Security
3.2.2	Outcome(s):
	Students will be able to:
	Describe current networking technologies and trends.
	Describe and discuss data network architectures and protocols, to include their advantages and
	disadvantages, applications, and security issues.

CAE Optional KUs Page 1 September 2013

Algorithms

3.3

		tent of this Knowledge Unit is to provide students with the ability to select and apply algorithms to specific problems and to analyze the effectiveness of algorithms in context.
	3.3.1	Topic(s):
		Algorithm Analysis
		Computational Complexity
		Best/Worst/Average Case Behavior
		Optimization
		Searching / Sorting
	3.3.2	Outcome(s):
		Students will be able to:
		Describe how to perform an analysis of algorithms to determine best and worst case behavior
3.4		og Telecommunications Systems
		tent of this Knowledge Unit is to provide students with a basic knowledge of the architectures and associated with analog communications systems.
	3.4.1	Topic(s):
		Signaling Methods
		Architecture
		Trunks, Switching
		Grade of Service
		Blocking
		Call Arrival Models
		Interference Issues
	3.4.2	Outcome(s):
		Students will be able to:
		Describe the basic concepts of modern analog communications systems, using block
		diagrams.
		Briefly describe concepts such as the different types of modulation and their advantages and
		applications, bandwidth, noise and the importance of the signal-to-noise ratio.
3.5		d Computing
		tent of this Knowledge Unit is to provide students with a basic understanding of the technologies and
		es that enable cloud computing, different types of cloud computing models and the security and legal
		associated with cloud computing.
	3.5.1	Topic(s):
		Virtualization platforms
		*Cloud Services
		SaaS, PaaS, DaaS, IaaS
		Service Oriented Architectures
		*Deployment Models
		private, public, community, hybrid
		Security
		Storage
	252	Legal/Privacy Issues
	3.5.2	Outcome(s): Students will be able to:
		Students will be able to: Describe each type of service/model of cloud computing
		Describe each type of service/model of cloud computing Compare and contrast: local resource requirements, local control, network requirements, and
		security (attacks, mitigations, overall vulnerability)
		became, (actions, interfactions, overall value admity)

CAE Optional KUs Page 2 September 2013

Cybersecurity Planning and Management

3.6

The intent of this Knowledge Unit is to provide students with the ability to develop plans and processes for a holistic approach to cybersecurity for an organization. 3.6.1 Topic(s): Operational, Tactical, Strategic Plan and Management ____ Business Continuity / Disaster Recovery __ C-Level Functions ____ Making Cybersecurity a strategy (part of core organizational strategy) Change control **3.6.2 Outcome(s):** Students will be able to: Examine the placement of security functions in a system and describe the strengths and weaknesses Develop contingency plans for various size organizations to include: business continuity, disaster recovery and incident response. *Develop system specific plans for: ____ The protection of intellectual property ___ The implementation of access controls, and __ Patch and change management. 3.7 **Data Administration** The intent of this Knowledge Unit is to provide students with methods to protect the confidentiality, integrity, and availability of data throughout the data life cycle. 3.7.1 Topic(s): ____ Big Data Hadoop / Mongo DB / HBASE ___ Data Policies ___ Data Quality ___ Data Ownership ____ Data Warehousing ____ Long Term Archival ____ Data Validation Data Security (access control, encryption) **3.7.2 Outcome(s):** Students will be able to: ____ Identify relevant security issues given a system and data management structure 3.8 **Data Structures** The intent of this Knowledge Unit is to provide students with an understanding of the basic abstract data types, associated operations and applying them to solve problems. 3.8.1 Topic(s): ____ Strings, Lists, Vectors, Arrays ___ Heaps, Queues, Stacks, Buffers __ Searching and Sorting __ Trees __ Data Formats **3.8.2 Outcome(s):** Students will be able to: List the most common structures and data formats for storing data in a computer system. Discuss the advantages and disadvantages of different data structures/formats.

CAE Optional KUs Page 3 September 2013

3.9

Database Management Systems

The intent of this Knowledge Unit is to provide students with the skills to utilize database management system to solve specific problems. 3.9.1 Topic(s): Overview of database types (e.g., flat, relational, network, object-oriented) SQL (for queries) Advanced SQL (for DBMS administration - e.g., user creation/deletion, permissions and access controls) _ Indexing, Inference, Aggregation, Polyinstantiation How to protect data (confidentiality, integrity and availability in a DBMS context) Vulnerabilities (e.g., SQL injection) 3.9.2 Outcome(s): Students will be able to: List the most common structures for storing data in a database management system. Configure a commodity DBMS for secure access. Describe alternatives to relational DBMSs and their unique security issues. Describe the role of a database, a DBMS, and a database server within a complex system supporting multiple applications. Demonstrate basic SQL proficiency for table creation, data insertion and data query. Describe DBMS access controls and privilege levels and apply them to a simple database. Develop a DB structure for a specific system/problem. 3.10 Digital Communications The intent of this Knowledge Unit is to provide students with knowledge of the protocols and methodologies used in modern digital communications systems. 3.10.1 Topic(s): ____ Components of a digital communications system ____ Digital Signaling ____ Spread Spectrum Signals *Multi-User Communication Access Techniques ____ CDMA, TDMA, FDMA, SDMA, PDMA **3.10.2 Outcome(s):** Students will be able to: Describe digital communications systems in terms of subsystems and modulation techniques. Describe the current state of the art in digital communications. Compare and contrast different approaches to digital communications and describe the advantages and disadvantages of each.

The intent of this Knowledge Unit is to provide students with the skills to apply forensics techniques throughout an investigation life cycle with a focus on complying with legal requirements.

	3.11.1	Topic(s):
		*Legal Compliance
		Applicable Laws
		Affidavits
		How to Testify
		Case Law
		Chain of custody
		*Digital Investigations
		E-Discovery
		Authentication of Evidence
		Chain of Custody Procedures
		Metadata
		Root Cause Analysis
		Using Virtual Machines for Analysis
	3.11.2	Outcome(s):
		Students will be able to:
		Discuss the rules, laws, policies, and procedures that affect digital forensics
		Use one or more common DF tools, such as EnCase, FTK, ProDiscover, Xways, SleuthKit.
		Describe the steps in performing digital forensics from the initial recognition of an incident
		through the steps of evidence gathering, preservation and analysis, through the completion of
		legal proceedings.
3.12	Host !	Forensics
		tent of this Knowledge Unit is to provide students with the ability to apply forensics techniques to
		gate and analyze a host in a network.
		Topic(s):
	3.12.1	File Systems and File System Forensics
		Hypervisor Analysis
		Registry Analysis
		Registry Analysis Cryptanalysis
		Rainbow Tables
		Steganography
		Steganography Networking Concepts, Services, Protocols
		Operating Systems Concepts
		Live System Investigations
		(must include hands-on activities)
	3 12 2	Outcome(s):
	3.14.4	Students will be able to:
		Describe what can/cannot be retrieved from various OSes.
		Describe the methodologies used in host forensics.
		Describe the incurouogies used in host forensics.

3.13 Device Forensics

The intent of this Knowledge Unit is to provide students with the ability to apply forensics techniques to investigate and analyze a device. 3.13.1 Topic(s): Mobile Device Analysis **Tablets** SmartPhones GPS ___ (must include hands-on activities) **3.13.2 Outcome(s):** Students will be able to: _____ Describe methods for the acquisition/analysis of mobile devices (e.g., device storage, system data, cell tower logs). Explain the legal issues related to mobile device forensic activities. 3.14 Media Forensics The intent of this Knowledge Unit is to provide students with the ability to apply forensics techniques to investigate and analyze a particular media in context. 3.14.1 Topic(s): ____ Drive Acquisition *Authentication of Evidence ____ Verification and Validation Hashes Metadata _ Live vs. Static Acquisition ___ Sparse vs. Full Imaging ___ Slack Space ____ Hidden Files/clusters/partitions __ (must include hands-on activities) **3.14.2 Outcome(s):** Students will be able to: ____ Describe methods and approaches for forensic analysis on specified media. 3.15 Network Forensics The intent of this Knowledge Unit is to provide students with the ability apply forensics techniques to investigate and analyze network traffic. 3.15.1 Topic(s): ____ Packet Capture and Analysis **Intrusion Detection and Prevention** ____ Interlacing of device and network forensics ____ Log-file Analysis ____ Forensic Imaging and Analysis ___ (must include hands-on activities) **3.15.2 Outcome(s):** Students will be able to: ____ Describe the methodologies used in network forensics. ____ Analyze and decipher network traffic, identify anomalous or malicious activity, and provide a summary of the effects on the system.

3.16 Embedded Systems The intent of this Knowledge Unit is to provide students with the ability to develop applications that run on embedded devices while complying with device constraints. 3.16.1 Topic(s): Real-time Operating Systems Microcontroller architectures Interrupt handling and timing issues Resource management in real time systems _ C Programming ___ Java, JavaScript or some other runtime programming environment **3.16.2 Outcome(s):** Students will be able to: ____ Discuss embedded system architectures, real time OS issues such as concurrency and synchronization, and real time resource management. 3.17 Forensic Accounting The intent of this Knowledge Unit is to provide students with the ability to apply forensics techniques to respond to and investigate financial incidents. 3.17.1 Topic(s): ____ Investigative Accounting Fraudulent Financial Reporting Misappropriation of Assets Indirect Methods of Reconstructing Income _ Money Laundering ___ Transnational financial flows ___ Litigation services ____ Evidence Management Economic Damages and Business Valuations **3.17.2 Outcome(s):** Students will be able to: ____ Describe common forms of financial statement fraud and related detection techniques. Describe and implement methods of indirectly estimating concealed revenue and income. Describe common methods of money laundering and related methods of prevention and detection (including related laws and regulations). Compute loss, damages, and business value for occurrences of fraud, theft and fraudulent financial statements. 3.18 Formal Methods The intent of this Knowledge Unit is to provide students with a basic understanding of how mathematical logic can be applied to the design of secure systems. 3.18.1 Topic(s): ___ Concept of Formal Methods Mathematical Logic *Applications Role in system design Role in software engineering __ Limitations Bell-LaPadula (as an example formal model) Automated Reasoning Tools System Modeling and Specification Proofs and Verification **3.18.2 Outcome(s):** Students will be able to:

CAE Optional KUs Page 7 September 2013

Apply formal security policy models to real world scenarios.

3.19 Fraud Prevention and Management The intent of this Knowledge Unit is to provide students with the necessary knowledge to develop plans and processes for a holistic approach to preventing and mitigating fraud throughout the system lifecycle. 3.19.1 Topic(s): Symptom Recognition

	3.19.1	Topic(s):
		Symptom Recognition
		Data Driven Detection
		Investigation of Theft
		Concealment
		Conversion Methods
		Inquiry and Reporting
		Financial, Revenue and Inventory
		Liability and inadequate disclosure
		Consumer fraud
	3.19.2	Outcome(s):
		Students will be able to:
		Describe the components of the fraud triangle – necessary condition for fraud.
		Describe the cost and effectiveness of common fraud detection and prevention methods.
		Analyze record keeping and management procedures for assets and to identify/correct
		weaknesses.
		Describe legal and ethical requirements for detecting, preventing and reporting fraud.
		Describe investigative procedures for fraud.
		Describe common methods of financial statement fraud.
3.20	Hard	ware Reverse Engineering
		ent of this Knowledge Unit is to provide students with an introduction to the basic procedures
		ary to perform reverse engineering of hardware components to determine their functionality, input
		s, and stored data.
	Julputs	, and stored data.

3.20.1 Topic(s):

	*Principles of Reverse Engineering
	Stimulus, Data Collection, Data Analysis
	Specification development
	Capability Enhancement / Modification Techniques
	Detecting Modification
	Stimulation Methods / Instrumentation (probing and measurement)
	JTAG IEEE 1149.1
	Defining and Enumerating Interfaces
	Functional Decomposition
7,,400	ma(a):

3.20.2 Outcome(s):

Students will be able to:

Perform basic procedures such as probing, measuring, and data collection to identify functionality and to affect modifications.

3.21 Hardware/Firmware Security

The intent of this Knowledge Unit is to provide students with an understanding of the diverse components in hardware/firmware, their roles, and the associated security concerns. 3.21.1 Topic(s): ____ Microcode ____ Firmware _ Hardware Abstraction Layers __ Virtualization Layers **3.21.2 Outcome(s):** Students will be able to: Describe how systems are initialized, how software is loaded, and how software and hardware Describe the role of intermediate software such as hardware abstraction layers or other forms of middleware. 3.22 IA Architectures The intent of this Knowledge Unit is to provide students with an understanding of common security architectures for the protection of information systems and data. 3.22.1 Topic(s): ____ Defense in Depth DMZs ___ Proxy Servers __ Composition and Security _ Cascading ___ Emergent Properties ___ Dependencies TCB Subsets ____ Enterprise Architectures / Security Architectures Secure network design **3.22.2 Outcome(s):** Students will be able to: ____ Examine a specific architecture and identify potential vulnerabilities. ____ Design a secure architecture for a given application. 3.23 IA Compliance The intent of this Knowledge Unit is to provide students with an understanding of the rules, regulations and issues related to compliance with applicable laws and regulations. 3.23.1 Topic(s): ____ HIPAA ____ Sarbanes Oxley ___ FERPA ___ Data Breach Disclosure Laws __ FISMA ____ Gramm Leach Bliley PCI DSS **3.23.2 Outcome(s):** Students will be able to: List the applicable laws for compliance in a given situation. ____ Describe what the laws mandate and where they apply. ____ Conduct audits to determine compliance with laws.

3.24 IA Standards

The intent of this Knowledge Unit is to provide students with an understanding of the common standards related to information assurance. 3.24.1 Topic(s): ____ HIPAA **FERPA** Sarbanes-Oxley Understanding appropriate commercial standards ___ Knowing which standards apply to specific situations Rainbow Series **3.24.2 Outcome(s):** Students will be able to: ____ Describe the impact of legal/regulatory standards on a given system. Describe how standards, such as the Orange Book, may be applied to the requirements for a sub-contractor or customer. 3.25 Independent Study / Directed Study / Special Topics / Advanced Topics The intent of this Knowledge Unit is to provide credit for courses that address emerging issues related to information assurance and cyber defense. 3.25.1 Topic(s): ____ Courses focused on emerging technologies and their security relevant issues or new Tools, Techniques and Methods related to IA/Cyber Defense This "wild-card" Knowledge Unit allows any school to submit an IA/Cyber Defense course for credit towards satisfying the academic requirements to be designated as a CAE. It will beup to the on-site review process to validate if the course is worthy of credit.) 3.26 Industrial Control Systems The intent of this Knowledge Unit is to provide students with an understanding of the basics of industrial control systems, where they are likely to be found, and vulnerabilities they are likely to have. **3.26.1** Topic(s): SCADA Firewalls ___ Hardware Components ____ Programmable Logic Controllers (PLCs) Protocols (MODBUS, PROFINET, DNP3, OPC, ICCP, SERIAL) Networking (RS232/485, ZIGBEE, 900MHz, BlueTooth, X.25) ____ Types of ICSs (e.g., power distribution systems, manufacturing) Models of ICS systems (time driven vs. event driven) Common Vulnerabilities in Critical Infrastructure Systems ____ Ladder Logic **3.26.2 Outcome(s):** Students will be able to: ____ Describe the use and application of PLCs in automation. Describe the components and applications of industrial control systems. Explain various control schemes and their differences. Demonstrate the ability to understand, evaluate and implement security functionality across an industrial network

CAE Optional KUs Page 10 September 2013

3.27	Intro to Theory of Computation The intent of this Knowledge Unit is to provide students with the basic knowledge of finite automata and		
		oplication to computation.	
	-	Topic(s):	
	3.47.1	Computability	
		Complexity Complexity	
		Turing machines	
		Deterministic and non-deterministic finite automata	
	3.27.2	Outcome(s):	
		Students will be able to:	
		Describe the concepts of complexity and computability.	
3.28		sion Detection / Prevention Systems	
		ent of this Knowledge Unit is to provide students with knowledge and skills related to detecting and	
	analyzi	ing vulnerabilities and threats and taking steps to mitigate associated risks.	
	3.28.1	Topic(s):	
	0.20.1	Deep Packet Inspection	
		Log File Analysis	
		Log Aggregation	
		Cross Log Comparison and Analysis	
		Anomaly Detection	
		Misuse Detection (Signature Detection)	
		Specification-based Detection	
		Host-based Intrusion Detection and Prevention	
		Network-based Intrusion Detection and Prevention	
		Distributed Intrusion Detection	
		Hierarchical IDSes	
		Honeynets/Honeypots	
	3.28.2	Outcome(s):	
		Students will be able to:	
		Demonstrate the ability to detect, identify, resolve and document host or network intrusions.	
		Demonstrate the ability to detect various types of malware (keyloggers, rootkits) and	
		unauthorized devices (rogue wireless access points) on a live network.	
		Demonstrate the ability to configure IDS/IPS systems to reduce false positives and false	
		negatives.	
3.29	Life-C	Cycle Security	
		ent of this Knowledge Unit is to provide students with an understanding of how security principles	
		applied to improve security throughout the system or product lifecycle.	
	3.29.1	Topic(s):	
		System Life-Cycle Phases and Issues	
		Development Processes	
		Configuration Management	
		Developmental Threats	
		Software Assurance Maturity Model	
		Building Security In Maturity Model	
	3.29.2	Outcome(s):	
	J. 11 J. 11	Students will be able to	
		Analyze a security failure and identify how decisions in other phases of the system life-cycle	
		influenced the eventual failure.	
		List and describe the phases of the system life-cycle.	
		List and describe the elements of a maturity model.	
		Dist and describe the elements of a maturity model.	

3.30 Low Level Programming

3.31

	The intent of this Knowledge Unit is to provide students will the skill and ability to program with low level languages to perform low level operations.
3.30.1	Topic(s):
	C
	Assembly
	Appropriate and secure use of library functions
	Detailed language syntax
	Pointers and pointer manipulation
	Recursive programming
	Modularization
2 20 2	Defensive programming
3.30.2	Outcome(s):
	Students will be able to:
	Utilize low level programming languages to implement complex programs such as internal operating system components and drivers to interface with and control hardware devices.
The int	le Technologies tent of this Knowledge Unit is to provide students with an understanding of the hardware, unications, management and programming environments associated with mobile technologies.
3.31.1	Topic(s):
	*2G -> 3G -> 4G / LTE -> 5G
	Standards Heritage
	Core Architecture Evolution
	Design Choices
	Design Choices Encryption
	Design ChoicesEncryptionMobile Use of SS7
	Design ChoicesEncryptionMobile Use of SS7RRC Signaling
	 Design Choices Encryption Mobile Use of SS7 RRC Signaling Billing/Charging
2212	 Design Choices Encryption Mobile Use of SS7 RRC Signaling Billing/Charging Wireless Security (WEP vs WPA2)
3.31.2	Design Choices Encryption Mobile Use of SS7 RRC Signaling Billing/Charging Wireless Security (WEP vs WPA2) Outcome(s):
3.31.2	Design Choices Encryption Mobile Use of SS7 RRC Signaling Billing/Charging Wireless Security (WEP vs WPA2) Outcome(s): Students will be able to:
3.31.2	Design Choices Encryption Mobile Use of SS7 RRC Signaling Billing/Charging Wireless Security (WEP vs WPA2) Outcome(s): Students will be able to: Describe how a mobile device maintains connectivity to the network while in motion, to
3.31.2	Design Choices Encryption Mobile Use of SS7 RRC Signaling Billing/Charging Wireless Security (WEP vs WPA2) Outcome(s): Students will be able to:

3.32 Network Security Administration The intent of this Knowledge Unit is to provide students with knowledge of the methods of analyzing and mitigating threats within a network environment. 3.32.1 Topic(s): **Network Components** Network Protocols **Network Security Devices** _ Network Security Services __ Protection of Communicated Data ___ Network Configuration ___ Security Automation ____ Network Security Policies Packet Capture and Analysis **3.32.2 Outcome(s):** Students will be able to: ____ Appropriately position network security components within a network architecture to implement a layered defense. Securely configure network devices and services and establish secure communications between networks. 3.33 Operating Systems Hardening The intent of this Knowledge Unit is to provide students with the ability to apply methods such as managing applications, services, and network ports to improve the robustness of operating systems. 3.33.1 Topic(s): ____ Secure Installation ____ Removing unnecessary components File system maintenance (isolation of sensitive data) ___ User restrictions (access and authorizations) ___ User / Group / File Management Password Standards and Requirements ____ Shutting Down Unnecessary/Unneeded Services ____ Closing Unnecessary/Unneeded Ports ____ Patch Management / Software Updates Virtualization **Vulnerability Scanning 3.33.2 Outcome(s):** Students will be able to: Describe, for a given OS, the steps necessary for hardening the OS with respect to various

unnecessary ports, and ensure that all patches and updates are applied.

Securely install a given OS, remove or shut down unnecessary components and services, close

applications.

3.34 Operating Systems Theory The intent of this Knowledge Unit is to provide students with an understanding of the issues related to the design and implementation of operating system concepts, components and interfaces. 3.34.1 Topic(s): Privilege States Processes & Threads, Process/Thread Management Memory Management, Virtual Memory Inter-process Communications Concurrency and Synchronization, Deadlocks __ File Systems __ Input / Output Real-time operating systems / security issues __ Distributed OS architectures & security issues ___ Race Conditions ____ Buffer Overflows Virtualization Clear Interface Semantics **3.34.2 Outcome(s):** Students will have an understanding of operating systems theory and implementation. They will understand OS internals to the level that they can design and implement significant architectural changes to an existing OS. 3.35 Overview of Cyber Operations The intent of this Knowledge Unit is to provide students with an understanding of the authorities, roles and steps associated with cyber operations. 3.35.1 Topic(s): ____ Legal Authorities and Ethics *Stages of a Cyber Operation (and details of each phase) ____ Target Identification __ Reconnaissance __ Gaining Access __ Hiding Presence __ Establishing Persistence Execution Assessment **Basic Process Modeling** Validating Procedures Handling failures to follow procedures ___ Case studies of actual cyber operations **3.35.2 Outcome(s):** Students will be able to: _____ Describe the laws that provide US entities the authority to perform cyber operations. List the phases of a well organized cyber operation and describe the goals and objectives of

Identify specific phases of a cyber operation in network traffic.

Describe potential motivations that might prompt an entity to perform a cyber operation.

3.36 Penetration Testing

The intent of this Knowledge Unit is to provide students with methods of discovering ways of exploiting vulnerabilities to gain access to a system. 3.36.1 Topic(s): ____ Flaw Hypothesis Methodology Other methodologies (e.g., OSSTMM) Identifying flaws from documentation _ Identifying flaws from source code analysis __ Vulnerability Scanning Understanding families of attacks Understanding flaws that lead to vulnerabilities ____ Enumeration, foot printing ____ Attack Surface Discovery __ Attack Vectors **3.36.2 Outcome(s):** Students will be able to: Plan, organize and perform penetration testing on a simple network. 3.37 QA / Functional Testing The intent of this Knowledge Unit is to provide students with methods to assess how well a functional unit meets a requirement. 3.37.1 Topic(s): ____ Testing methodologies (white, grey, black box testing) _ Test coverage analysis ____ Automatic and manual generation of test inputs ____ Test execution Validation of results **3.37.2 Outcome(s)**: Students will be able to: ____ Develop effective tests in a structured, organized manner. Perform security functional testing to demonstrate that security policies and mechanisms are completely and correctly implemented. 3.38 RF Principles The intent of this Knowledge Unit is to provide students with a basic understanding of radio frequency communications. 3.38.1 Topic(s):____ Electromagnetic radiation, Antennas, Information Modulation, Digital Modulation, Spectral representation, Bandwidth, BER, Eb/No vs. S/N Limiting Access in RF ____ Propagation Principles **3.38.2 Outcome(s):** Students will be able to: Identify methods for isolating RF emissions __ Identify techniques for obfuscating RF transmissions ____ Discuss the tradeoffs associated with bandwidth data rate, modulation, complexity, acceptable BER, and signal spreading

3.39 Secure Programming Practices The intent of this Knowledge Unit is to provide students with an understanding of the characteristics of secure programs and the ability to implement programs that are free from vulnerabilities. 3.39.1 Topic(s): Specification of Security Requirements **Principles of Secure Programming** _ Robust Programming *Defensive Programming ____ Input Validation, Type checking *Programming Flaws Buffer Overflows, Integer Errors Static Analysis **Data Obfuscation** _ Data Protection **3.39.2 Outcome(s):** Students will be able to: Produce software components that satisfy their functional requirements without introducing Describe the characteristics of secure programming. 3.40 Security Program Management The intent of this Knowledge Unit is to provide students with the knowledge necessary to define and implement a security program for the protection of an organizations systems and data. 3.40.1 Topic(s): *Project management __ Resource management Project budgeting (cost benefit, net present value, internal rate of return) _ Risk management and Analysis __ Quality Assurance / Quality Control __ Monitoring and Control ___ Deliverables ___ Timelines ___ Security Awareness, Training and Education ___ Security Baselines _ Change Management, Patch Management ____ Roles and Responsibilities of the Security Organization Compliance with Applicable Laws and Regulations **3.40.2 Outcome(s):** Students will be able to: _____ Apply their knowledge to develop a security program, identifying goals, objectives and

_ Apply their knowledge to effectively manage a security program.

Assess the effectiveness of a security program.

3.41 Security Risk Analysis

The intent of this Knowledge Unit is to provide students with sufficient understanding of risk assessment models, methodologies and processes such that they can perform a risk assessment of a particular systems and recommend mitigations to identified risks.

	3.41.1	Topic(s):
		Risk Assessment/Analysis Methodologies
		Risk Measurement and Evaluation Methodologies
		Risk Management Models
		Risk Management Processes
		Risk Mitigation Economics
		Risk Transference/Acceptance/Mitigation
		Communication of Risk
3.41.2 Outcome (s):		Outcome(s):
	Students will be able to:	
		Describe how risk relates to a system security policy.
		Describe various risk analysis methodologies.
		Evaluate and categorize risk 1) with respect to technology; 2) with respect to individuals, and 3) in the enterprise, and recommend appropriate responses.
		Compare the advantages and disadvantages of various risk assessment methodologies
		Select the optimal methodology based on needs, advantages and disadvantages.
3.42	Softw	are Security Analysis
	The int	ent of this Knowledge Unit is to provide students with an understanding of the tools and methods for
	analyzing software, either in source code or binary form.	
	3.42.1	Topic(s):
	011212	Testing Methodologies
		Source and Binary Code Analysis
		Static and Dynamic Analysis Techniques
		Sandboxing
		Common analysis tools and methods
	3.42.2	Outcome(s):
	01.1212	Students will be able to:
		Describe software security analysis tools and techniques.
		Apply their knowledge to perform software security analysis, using common tools, against
		previously unknown software components.
		previously unknown software components.

3.43 Software Assurance The intent of this Knowledge Unit is to provide students with the ability to describe why software assurance is important to the development of secure systems and describe the methods and techniques that lead to secure software. 3.43.1 Topic(s): ____ Robust programming Secure Software Concepts, Requirements, Design, Implementation and Testing Secure Development Life-Cycle Phases: requirements, design, development, testing, deployment, operations, maintenance and disposal. Software testing and acceptance ___ Threat modeling ___ Fuzz testing ___ BUG BAR ____ Characteristics of secure software Secure Software is not software that implements security functions (e.g., crypto, access control) **3.43.2 Outcome(s)**: Describe the importance of secure software, and the programming practices and development processes and methodologies that lead to secure software. 3.44 Software Reverse Engineering The intent of this Knowledge Unit is to provide students with the capability to perform reverse engineering of executable code to determine its function and affects, or to recover the source code implementation. 3.44.1 Topic(s):____ Specification Recovery ____ Malware Analysis ____ Reverse Engineering Tools & Techniques ___ Sandboxing **3.44.2 Outcome(s):** Students will be able to: ____ Use a common SW RE tool to safely perform static and dynamic analysis of software (or malware) of unknown origin for the purposes of recovering the original implementation and/or understanding the software functionality. 3.45 Supply Chain Security The intent of this Knowledge Unit is to provide students with an understanding of the security issues associated with building complex systems out of third party components of unknown (and potentially unknowable) origin. 3.45.1 Topic(s): ____ Global Development ____ Off Shore Production ____ Transport and Logistics of IT Components Evaluation of 3rd Party Development Practices Understanding of the Capabilities and Limits of Software and Hardware Reverse Engineering **3.45.2 Outcome(s):**

CAE Optional KUs Page 18 September 2013

Describe the issues related to outsourcing hardware and/or software development and/or

Describe methods to mitigate these issues, and the limitations of these methods.

Students will be able to:

3.46 Systems Certification and Accreditation

requirements.

The intent of this Knowledge Unit is to provide students with an understanding of the processes and regulations associated with the analysis/evaluation of operational systems and the authorities and processes for the approval of their operation. 3.46.1 Topic(s): ____ DoD Policies and Directives Roles / Players ____ Components of the C&A Process ____ Certification Boards and Panels ____ NIST Risk Management Framework (SP800-37) **3.46.2 Outcome(s):** Students will be able to: _____ Describe the DoD system certification and accreditation processes. ____ Define certification and accreditation. 3.47 Systems Programming The intent of this Knowledge Unit is to ensure that students are proficient in the development of complex, low level software (e.g., software interacting directly with the hardware platform or within the deepest level of an operating system), typically in the C or assembly programming language. **3.47.1** Topic(s): ____ Hardware / software interfaces and interactions ____ Programming to operating systems internal interfaces Low level programming languages (C, Assembly) **3.47.2 Outcome(s):** Students will be able to: ____ Implement new functions in an OS kernel ____ Develop complex and sophisticated programs, such as a device driver, that can be embedded into an OS kernel. Write a program that implements a network stack to manage network communications. Write a functional, stand-alone assembly language program of the complexity of a basic telnet client, with no help from external libraries. 3.48 Systems Security Engineering The intent of this Knowledge Unit is to provide students with a thorough understanding of the skills necessary to participate in the development of large scale systems. Students will understand that techniques, methods, and issues involved across the entire system life-cycle, from requirements identification and analysis, through various levels of design, implementation, testing and operation/maintenance. 3.48.1 Topic(s): ____ Design of testing Testing methodologies ____ Emergent Properties ____ Systems Engineering ___ System Integration ___ Make or Buy Analysis ____ Systems Security Analysis ___ Enterprise system components **3.48.2 Outcome(s):** Students will be able to: ____ Analyze system components and determine how they will interact in a composed system.

CAE Optional KUs Page 19 September 2013

___ Analyze a system design and determine if the design will meet the system security

3.49 Virtualization Technologies

The intent of this Knowledge Unit is to provide students with an understanding of how modern host virtualization is implemented, deployed, and used. Students will understand the interfaces between major components of virtualized systems, and the implications these interfaces have for security.

	3.49.1	Topic(s):
		Virtualization Architectures
		Virtualization techniques for code execution
		Memory management in virtual environments
		Networking in virtual environments
		Storage in virtual environments
		Scheduling of virtual machines
		Migration and snapshots
		Virtual management layers
		Digital Forensics in virtual environments
	3.49.2	Outcome(s):
	011212	Students will be able to:
		Describe the fundamental concepts of virtualization.
		Compare and contrast the different virtualization architectures.
3 50	Vulne	erability Analysis
3.30		ent of this Knowledge Unit is to provide students with a thorough understanding of system
		abilities, to include what they are, how they can be found/identified, the different types of
		abilities, how to determine the root cause of a vulnerability, and how to mitigate their effect on an
	_	onal system.
	3.50.1	Topic(s):
		Definition of "vulnerability"
		Failures of Procedures
		*Taxonomy
		Buffer overflows, privilege escalation, rootkits
		trojans/backdoors/viruses
		Return oriented programming
		Social Engineering Vulnerabilities
		Vulnerability characteristics
		Root causes of vulnerabilities
		Administrative Privileges and Their Effect on Vulnerabilities
		Mitigation strategies
		Tools and Techniques for Identifying Vulnerabilities
	3.50.2	Outcome(s):
		Students will be able to:
		Describe characteristics of malware.
		Identify malware.
		Apply tools and techniques for identifying vulnerabilities.

3.51 Wireless Sensor Networks

The intent of this Knowledge Unit is to provide students with a basic understanding of wireless sensor network architectures and the issues associated with them.

3.51.1	Topic(s):
	Managed vs. Ad-hoc
	Cross Layer Optimization
	MAC approaches
	Architectures
	Routing Protocols
	Authentication Hash Tables
	Data Integrity
	Data Poisoning
	Resource Starvation
	Energy Harvesting
3.51.2	Outcome(s):
	Students will be able to:
	Describe the challenges associated with wireless sensor networks, including coordination energy efficiency, self organization and security.