
Time Stepping for the cable equation,

Part 2: Parallel performance

Chuan Li1 and Vasilios Alexiades2

1Mathematics Department, University of Tennessee, Knoxville TN 37996
2Mathematics Department, University of Tennessee, Knoxville TN 37996

and Oak Ridge National Laboratory, Oak Ridge TN

Abstract

In this Part 2 of our work, we continue the discussion on time-steppers for the cable equation, modeling
action potential propagation in cardiac myocyte cells. Here we report results from parallel computations.

The cable equation is a diffusion-reaction PDE for transmembrane voltage, whose reaction (source)
term depends on several voltage-dependent quantities (gates), each satisfying a first order, highly non-
linear ODE.

The parallelization, for distributed computing via message passing, was done by domain decomposi-
tion and implemented in C using the MPI library.

We compare the performance of several low and high order, explicit and implicit time-stepping nu-
merical schemes on the parallelized 1D cable equation with the Luo-Rudy I (1991) ionic model.

Keywords: Parallel computation, domain decomposition, Super-Time-Stepping, Dufort-Frankel, Runge-
Kutta, action potential, Luo-Rudy ionic model, cable equation.

1 MATHEMATICAL MODEL

A full description of the model is given in our companion paper (Li & Alexiades, 2010b) and in an earlier
paper (Li&Alexiades,2010a). Only an outline of the model is presented here, for completeness.

The parabolic partial differential equation (1), known as the cable equation,

1
Ra

∂2V

∂x2
= Cm

∂V

∂t
+ Iion(V, t) + Istim(t), (1)

is widely used to describe electrical propagation in excitable tissue (Keener & Sneyd, 1998; Plonsey & Barr,
2007) such as nerve fibers and heart muscle. Here V (x , t) is the transmembrane voltage, Ra and Cm are the
axial resistance and membrane capacitance of the tissue. Iion represents the total ionic current, which, in
the Luo-Rudy I (1991) ionic model we use here, depends on seven variables gi, i = 1, ..., 7, known as gates.
They are functions of local voltage, and each is governed by an ODE of the form

dgi

dt
= αi(V ) (1− gi)− βi(V ) gi, g = gi, i = 1, ..., 7. (2)

The α’s and β’s, taking values between 0 and 1, are given by explicit formulas as functions of voltage V
(Luo & Rudy, 1991).

The stimulus current Istim, is the key to exciting the system. We apply a single stimulus at time 10 ms,
of duration 1 ms and strength −200 µA/cm2, on a short segment [0, 10 µm] at one end of the cable. This
instigates a single action potential that propagates along the cable. In our simulations, we use the values
Cm = 1.2 µF/cm2 and Ra = 300 kΩ, same as in (Li & Alexiades, 2010b).

We assume zero voltage gradient at the ends of the cable, and initialize the system from steady state
with initial values: Vinit = −84.547997mV , minit = 0.001665, hinit = 0.983302, jinit = 0.989522, dinit =

1



0.002977, finit = 0.999981, Xinit = 0.005643 and Caiinit = 0.000178, again, same as in (Li & Alexiades,
2010b).

The model consists of the PDE (1), the seven ODEs (2) and the above initial setup.

2 NUMERICAL SCHEMES

As in the companion Part 1 paper, we discretize the cable into M control volumes of uniform length ∆x.
Following standard Finite Volume discretization of the PDE (1), and applying equation (2) on each control
volume, yields a system of 8 ×M ODEs, see equations (4)-(6) in the companion paper (Li & Alexiades,
2010b).

We apply the following numerical schemes to solve the ODE system. Again, additional details appear in
(Li & Alexiades, 2010b).

• Super-Time-Stepping (STS) Scheme

Super-time-stepping is a simple method to accelerate explicit schemes for parabolic problems, especially
forward Euler (Alexiades et al.,1996). The scheme is described in the companion paper (Li & Alexiades,
2010b). In what follows, STS4 refers to STS scheme with N = 4 substeps per superstep and damping
ν = 0.1, whereas Euler refers to forward Euler scheme obtained by using N = 1, ν = 0 in the STS
scheme.

• DuFort-Frankel (DF) Scheme

DuFort-Frankel is an explicit, 2-step, second order accurate in space and time scheme, theoretically un-
conditionally stable (Mayers & Morton,1994). It is described in the companion paper (Li & Alexiades,
2010b).

• Runge-Kutta (RK) Schemes

The GNU Scientific Library (GSL 1.10) from GNU (GNU-GSL) provides various explicit and implicit,
non-adaptive and adaptive ODE solvers. Adaptive time-steppers cannot be used in parallel computa-
tions due to the difficulty of synchronizing the computation on the worker processes. Thus we compare
the three non-adaptive GSL solvers, namely, the explicit rk4 (classical 4th order RK), and the implicit
2nd order rk2imp and 4th order rk4imp. See (Li & Alexiades, 2010b) for comparison of adaptive
and non-adaptive schemes in serial computations.

3 NUMERICAL SIMULATIONS

A C program has been written implementing domain decomposition via message passing with the MPI
library.

The full domain (entire cable) is divided evenly into Nw segments. The master MPI process assigns the
nodes of each segment to one worker MPI process, which solves the ODEs at those nodes. At each time-step,
worker processes get synchronized and they exchange their boundary values with their adjacent neighbors.
Thus, all workers evolve at the same pace. Results are sent to the master process for printing out.

We employ the “library” approach, which was shown to be greatly effective in serial computations in (Li
& Alexiades, 2010b). Namely, we pre-compute values of the coefficients αi(V ), βi(V ), i = 1, ..., 7, of the
ODEs (2) for the gates over a range of V ’s, and store them in a “library” file. A copy of this “library” file
is loaded into memory on each worker and values of these coefficients at any V in the range are found by
interpolation.

A standard measure of parallel performance is the efficicency of parallelization, defined as

efficiency =
timing on one worker

timing on Nw workers * Nw
.

2



The numerical experiments on a 50mm cable reported here were performed on a cluster whose nodes
consist of dual Quad-Core AMD Opteron 2378 2.4 GHz processors (8 cores per node). All schemes were run
up to time tmax = 2000 ms with identical discretization parameters ∆x = 4 µm and ∆t = 0.01 ms.

Table 1 lists CPU timings (total execution time) and efficiencies on 1, 2, 5 and 10 workers. The timings
on 2, 5 and 10 workers are graphically illustrated in Fig.1.

Table 1. Timings and efficiencies on 50mm cable.
1 worker 2 workers 5 workers 10 workers

solver CPU(min) CPU(min) Efficiency CPU(min) Efficiency CPU(min) Efficiency
STS4 27 14 0.98 6 0.96 3 0.92
Euler 43 22 0.98 9 0.96 5 0.92
DF 46 23 0.99 10 0.96 5 0.91
GSLrk4 497 247 1.00 106 0.94 52 0.96
GSLrk2imp 492 245 1.00 102 0.96 59 0.83
GSLrk4imp 898 446 1.00 196 0.91 194 0.46

To convey graphically the speeding-up (reduction in execution time) achieved by parallelization, in Fig.2
we plot the timings of the three explicit, low order, non-RK schemes, STS4 (with N = 4, ν = 0.1), Euler
and DF. Similarly, Fig.3 shows the speeding-up of the three RK schemes rk4, rk2imp, and rk4imp. Note
that the RK schemes (Fig.3) are an order of magnitude slower than the non-RK schemes (Fig.2), which is
why we plot them in separate plots.

Figure 1: Comparison of timings of six solvers on 50mm cable running on 2, 5, 10 workers.

We observe the following, based on our experiments:

• All parallelized numerical schemes produce identical history and biological values with those obtained
from our serial code, presented in (Li & Alexiades, 2010b).

3



Figure 2: Timing curves of STS4, Euler, and DF solvers for 50mm cable.

Figure 3: Timing curves of the RK solvers rk4, rk2imp, rk4imp for 50mm cable.

4



• Increasing the number of worker processes, up to 10 workers, significantly speeds up computation for all
schemes, except for rk4imp, which costs almost the same time running on 5 and 10 worker processes.

• The low order explicit schemes (STS4, Euler and DF), with the same time step, are still 10 − 25
times faster than high order schemes after parallelization. The ionic source restricts the time step to
≤ 0.01 ms for all explicit schemes and for rk2im, and to ≤ 0.02 ms for rk4im.

• On the basis of accuracy and effciency (CPU time), STS4 (i.e. STS with N = 4, ν = 0.1) is still the
winner among the schemes tested. When higher accuracy is needed, rk4 would be best.

4 FUTURE WORK

We are extending our parallel codes to 2D and 3D, and also developing a space and time parallel code,
hoping to achieve further speed ups. Simulating cardiac arrhythmias is the goal.

5 ACKNOWLEDGMENT

We thank Dr. Jack Buchanan of the University of Tennessee Health Science Center in Memphis for providing
biological parameters and suggestions. This work was supported by NIH grant 1R21GM080698-01A1.

REFERENCES

1. Alexiades, V, Amiez G, & Gremaud, PA (1996). Super-time-stepping acceleration of explicit schemes for
parabolic problems, Commun. Num. Meth. Eng. v.12, pp.12–31.

2. cellML, luo rudy 1991 version06, http://models.cellml.org/luo rudy 1991 version06.

3. GNU-GSL, GNU Scientific Library (accessed Jan.2010) http://ftp.gnu.org/pub/gnu/gsl

4. Keener, J & Sneyd J (1998). Mathematical physiology, Springer.

5. Li, C & Alexiades, V, (2010a). Comparison of time stepping schemes on the cable equation, Electronic
J of Differential Equations, to appear.

6. Li, C & Alexiades, V, (2010b). Time stepping for the cable equation, Part 1: Serial performance, in this
volume.

7. Luo, CH & Rudy, Y (1991). A model of the ventricular cardiac action potential: depolarization, repo-
larization, and their interaction, Circ. Res. v.68, pp.1501–1526.

8. Mayers, DF & Morton, KW (1994). Numerical solution of partial differential equations. Cambridge U
Press.

9. Plonsey, R & Barr, RC (2007). Bioelectricity, a quantitative approach, 3rd ed., Springer.

5


