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A NOVEL ALTERNATING DIRECTION IMPLICIT
METHOD FOR SOLVING INTERFACE PROBLEMS

« What are Interface problems?

« What is the Matched Alternating Direction Implicit
Method?

 What are our results with this method thus far?
« How have we improved this method?



WHAT IS AN INTERFACE
PROBLEM?
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Jump Conditions:
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a- diffusion coefficient

u- function of interest

f-source term

- interface

Q- inside of interface

O*- outside of interface

n- normal direction to tangent line




APPLICATIONS

* Penne’s Bioheat  Poisson-Boltzmann Equation
Equation  Models Electrostatic
« Revolutionary Cancer Potential on Molecular

Treatment Surfaces




A MATCHED ALTERNATE
DIRECTION IMPLICIT METHOD

« Temporal Discretization

* Douglas Alternating Direction Implicit Method (D-ADI) and

Peaceman-Rachford Method

« Spatial Discretization
* Matched Interface and Boundary Method (MIB)



TEMPORAL DISCRETIZATION

Using the Douglas ADI Method:
* Similar to Implicit Euler Method

e 15t Order Accuracy
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Using the Peaceman-Rachford Method:
* Similar to Crank-Nicholson Method

« 27 Qrder Accuracy
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k —current time step
f-source term
u - function of interest
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SPATIAL DISCRETIZATION

Use the standard central difference formula on grids away from the interface:
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Correct the central dlﬁerence formula on grids close to the interface:
1~k
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Incorporate the derived jump conditions:
[auy] = Psinb + cosf(at —a~)u, —cosOla"¢,] :=
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Accuracy tests for 2-headed
and 4-leaf interface
examples

Compare the effectiveness
of Douglas ADI, Peaceman-
Rachford, and Peaceman-
Rachford ADI methods to a

given solution
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RECENT IMPROVEMENTS
IMPROVED CODING TECHNIQUES

» Can store arbitrary number of
Interface Points

« Same speed as before

+ Allows for more complicated
interface

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25

X-axis




RECENT IMPROVEMENTS

IMPROVED NUMERICAL METHODS

« Interface points at inflection
points can be calculated

* The closest points do not need to
be used for interpolation

« |deally the auxiliary point is
roughly halfway between the
interpolating points

. [auy] = sind + cosO(a* —a~)u, —

cosOla”¢,] =1

- Interface Point
- Auxiliary Point
- Interpolating Point

- Interpolating Point (Fictitious)
- Tangent Line
- Interpolating Point (old)




CONCLUSION

Future improvements

Overcomes mathematical obstacles in a number of

revolutionary applications

Special Thanks to Dr. Shan Zhao (University of Alabama]
and Dr. Chuan Li (West Chester University of PA)



