THE TOPOLOGY OF SHRINKING WEDGES AND RELATED
CONSTRUCTIONS

JEREMY BRAZAS

ABSTRACT. This unpublished note is dedicated to identifying basic topolog-
ical equivalences related to combinations of shrinking wedges (like the n-
dimensional Hawaiian earring), smash products, and infinite direct products.

1. INTRODUCTION AND REVIEW OF STANDARD CONSTRUCTIONS

This note is intended simply to provide explicit proofs of basic equivalences
and facts involving operations on spaces that are important within wild algebraic
topology. It is unclear if much in these notes is “original” although I have never
seen Theorem 2.14 published before - this maybe is the only result that could be
considered surprising. It is likely that much of this will be “folklore” for experts
who study wild algebraic topology.

Shrinking wedges of spaces, like the Hawaiian earring, play a prominent role
in the homotopy theory of Peano continua and other “wild” spaces that may not
have the homotopy type of a CW-complex. Standard constructions on spaces such
a products, wedges (one-point unions), suspensions, cones, smash products, and
various combinations of these spaces play an important role in ordinary algebraic
topology [3]. This note is dedicated to identifying some properties of their infinitary
analogues that are relevant to the progressive theory of “wild algebraic topology.”
Here the word “infinitary” refers to an operation with infinitely many inputs. Such
constructions include infinite direct products, shrinking wedges, and an infinite
analogue of the smash product.

Definition 1.1 (One-point Unions). The wedge of a family {(X;,x;) | i € I} of
based spaces is the space \/,.; X; = [ [,o; Xi/~ where the set {x; | i € I} is identified
to a single point by. The point by is the basepoint; we sometimes refer to it as the
wedge-point. A set U € \/,.; X; is open if and only if U n X; is open in X; for all
i € I. In other words, \/,.; X; has the weak topology with respect to the family
of subspaces {X; | i € I'}. This operation serves as the coproduct in the category
of based spaces. In particular, there are canonical embeddings X; — \/,_; X; for
each i, which map X; onto the i-th “summand.”

el

Definition 1.2 (Direct Products). The direct product of a family {X; | ¢ € I}
of based spaces is the space | [,.; X; consisting of I-tuples (x;)ic; with x; € X,
which formally are choice functions x : I — [[,.; X; such that x(i) € X; for all
1€ I. When a; € X; is a given basepoint, we take (a;);er to be the basepoint of the
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product. We will give this space the product topology unless stated otherwise. If
I=1{1,2,...,n}, we may write this product as [ [_; X; or X1 x Xa x -+ x X,,.

Remark 1.3. For a finite collection {(X;,z;) | 1 < i < n} of based spaces, we
identify the wedge \/_, X; canonically as a subspace of [[\_; X; where the i-th
summand of the wedge is identified with the subspace {1} x {®a} x -+ x {;_1} x
Xi x {xi11} x -+ x {x,} of the product.

Definition 1.4 (Smash Products). The smash product of two based spaces (X, zg)
and (Y,yo) is the quotient space X A Y = X x Y/X v Y, where we identify the
wedge X vY is identified with X x {yo} U {zo} x Y as mentioned above. The image
of X v Y in the quotient is the basepoint of X A Y. As special cases:

(1) if (S™, e,) is the based n-sphere, then "X = X A S™ is the n-th reduced
suspension of (X, xg).

(2) if [0,1] is the closed unit interval with basepoint 0, then C, X = X A [0, 1]
is the reduced cone of (X, xg).

2. SHRINKING WEDGES

A shrinking wedge of a countably infinite family of based spaces is exactly what
it sounds like. The underlying set is the same as the usual one-point union but we
give it a coarser topology so that the summands “shrink” toward the wedge-point.
Definition 2.1 (Shrinking Wedge). The shrinking wedge of countable set {(X;, x;)}jes
of based spaces is space \/ (X, ;) whose underlying set is the usual one-point

union \/jEJ X,,x;) with canonical basepoint by. A set U is open in \/jej i if
U n X; is open in X for all j € J and if X; € U for all but finitely many j e J
Whenever bp e U. When the basepoints are clear from context, we may write the

]EJ

shrinking wedge as \/ oy X; and if X; = Z for all j € J, we may denote it as \/J

Example 2.2. The special case H,, = VNS’" is called the n-dimensional Hawaiian
earring. It is known that H,, is (n — 1)-connected and m, (H,,) = Z" [1].

Remark 2.3. Let {(X;,z;)}ien be a sequence of based spaces. We may consider

the shrinking wedge \/,.X; naturally as a subspace of the infinite direct product
[ [,y X where X is identified with

{.’El} X {.’EQ} Xoee XXZ‘,1 XXZ‘ X {.’Ei+1} X oeen
and the basepoint is by = (1, 22, 3,...)-

Lemma 2.4. If {X; | i€ I} is a countably infinite collection of based spaces and
F C I is a finite subset, then

Vo= (V) v (Vi)

ieF

12

Lemma 2.5. If {X; ;| (¢,7) € I x J} is a countable collection of based spaces, then

\/(ivj)GIXJXi’j \/iel (VjeJXm) ’

12
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Remark 2;\(;. Many topological properties pass from the spaces X; to the shrink-
ing wedge \/,.;X;. For instance, if each X; has one of the following properties,
then so does Vie ;X;: Hausdorff, regular, completely regular compact, metriz-
able, first countable, second countable, path-connected, path-connected and locally
path-connected (as a combined property), among others. With some exceptions,
verifying these properties often amounts to observing that the property in ques-
tion is closed under forming countable direct products and closed subspaces (since

VierXi € [ ier Xi)-

To prove general facts about shrinking wedges, it is convenient to consider the
following unbased analogue.

Definition 2.7. Given a countable (not necessarily ordered) collection of spaces
{X; | i € I}, the shrinking disjoint union of this collection is the space HieIXi
whose underlying set is {zo} U [ [;c; Xi where z¢ is an added point. A set U is
open in ﬁieIXi if and only if U n X is open in X; for all ¢ € I and X; € U for all
l%lt finitely many ¢ whenever xg € U. We refer to xg as the primary limit point of

HieIXi‘

Note that the subspace [ [,.; X; of ﬁie[

We usually will consider [ [,.;X; as a based space with basepoint zy. By enumer-

X; has the usual disjoint union topology.

ating I, we may think of [ [,.,;X; as a sequence of disjoint spaces, “converging to”

Zo-

iel

Proposition 2.8. If {(X;,z;) | i € I} is a countable collection of based spaces, then
the canonical map | [,.; X = Ve Xi identifying {xo} U {x; | i € I} to the wedge
point by is a quotient map.

Proof. Let f denote the map ﬁieIXi — VieIXi in question. Consider U < Viein
such that f~1(U) is open. If by ¢ U, then f maps f~1(U) bijectively onto U and
f7YU) = 1l;e; Xi n U where X; n U is open in X; for each i. Thus U is open
in \/,.,X;. If by € U, then we have f~'(bo) = {xo} U {z; | i € I} € f~1(U). In
particular, U n X; is an open neighborhood of z; in X;. Moreover, since f~!(U)
is open, we have X; € f~1(U) for all but finitely many i € I. We conclude that
U n X, is open in X; for all 4 and that X; € U for all but finitely many i€ I. O

Remark 2.9. If X;r = X, U {z;} consists of the disjoint union of a space X; and
an isolated basepoint z;, then \/ieIX;r = [ [ X

The following lemma is straightforward to prove.

Lemma 2.10. If q; : X; — Y;, i € I is a countable collection of quotient maps,
then the induced based map [ [,q; : [ [;,c;Xi = [1;e;Ys is a quotient map.

Proof. Let q = ﬁiqi and suppose U © ﬁieIYi such that ¢~!(U) is open. Since
M U) 0 e Xi = Lier ¢; ' (U nY;) is open, ¢; "(U nY;) is open in X; for all
i. Since ¢; is quotient, U N Y; is open in Y; for all i. Moreover, if y, € U, then
2o € ¢ 1(U). In this case, we have X; € ¢ *(U) for all but finitely many i and thus
Y; € U for all but finitely many i. We conclude that U is open in ﬁie RO (]
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Corollary 2.11. If ¢; : (X;,x;) = (Yi,y:), i € I is a countable collection of based

quotient maps, then the induced map \/ ;4 : \;e; Xi — V Y, is a quotient map.

iel
Proof. Consider the following commutative diagram. The vertical maps are quo-
tient by Proposition 2.8 and the top map is quotient by Lemma 2.10.

¥ ]_L‘,equ' o~
—_—>

HieIXi HieIXi

| L

VierXi ———V

ierdi

zeI

It follows from the universal property of quotient maps that the bottom map must
be quotient. [

Lemma 2.12. Ifzg € A C Vie[Xi? and A; = An X; for each i € I, then

A= VielAi and
VXAV (/4.

Proof. Since A has the subspace topology inherited from V
hood of the wedgepoint by in Vie[
Ax VieIAi' Let ¢; : X; — X,;/A; be the quotient map collapsing A; to a point. We
have the following commutative diagram where the f\Yertical map f is the quotient

er4i, every neighbor-

A; contains A; for all but finitely many 7. Hence

map collapsing A to a point and the diagonal map \/,_;¢; is quotient by Corollary
2.11.

~

\/z‘eIXi

VieIXi/A W VieI(Xi/Ai)

The bottom map h is an induced bijection since f and Vie ;¢ have identical fibers;
most importantly, the fiber of the respective wedgepoints under these maps is

Vie ;Ai. Since f and \/,_;¢; are quotient maps, h is a homeomorphism. O

A continuous surjection f : A — B is a biquotient map if for every open cover
% of a fiber f~1(b) then there exists finitely many sets Uy, Us,...,U, € % such
that f(U; Uz U --- U U,) contains a neighborhood of b. The notion of biquotient
map is due to E. Michael [2] and is well-known in general topology. In particular,
Michael showed that every biquotient map is quotient and arbitrary products of
piquotient maps are biquotient. It is easy to see that the natural quotient map
[1ic/Xi = Ve X is, in fact, biquotient since the fiber of the wedge point is the
compact set {zo} U {x; | ¢ € I}, which is homeomorphic to w + 1. We have the
following consequence.

Lemma 2.13. Given two countable collections {X; | tel} and {Y; | j € J}, the
natural product map HleIX X ngJY — \/zeIX X \/JEJY i a quotient map.
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Theorem 2.14. Given any two countable collections of based spaces {X; | i

e m

I} and {Y; | j € J}, there is a canonical homeomorphism \/,.; Xi A\ je;Y;
\/(i,j)eliXi AYj.

Proof. Let xq,yo, (o, yo) denote the respective primarily limit points of the shrink-
ing disjoint unions [ [;c ;. Xi, [[;c;Y;, and [[(; j)er ;s Xi x Y. Consider the following
commutative diagram

~ ~ ¢ o~
[ieXi % HjeJYj >]_[(i,j)eliXi xY;

(I)J( J(?’)

VierXi x \/jeJYj H(i,j)eIxJXi NY;

(2{ J(4)

VierXi AVjesYj— ==~ V(i,j)eIxJXi NY;

The map (1) is quotient by Lemma 2.13 and map (2) is quotient by the construction
of the smash product. Map map (3) is quotient by Lemma 2.10 and map (4) is
the quotient map from Proposition 2.8. Finally the horizontal map ¢ is the map

that sends A = ({xo} X ,]:LYJ) U (’]:LXZ X {yo}) to the limit point {(xo,yo)} of

[ 1 ;)Xi x Y; (notice that this is homeomorphic to [[;c;Xi A [[,c,Y;) and is the
identity elsewhere. Since every neighborhood of A in

~ ~

L[ieIXi x HjeJYj

contains X; x Y; for all but finitely many (4, j) € I x J, it follows that ¢ is a quotient
map. By carefully considering the fibers of the map (1), one can check the the fibers
of both compositions include the set B = A U [[; jjer«; Xi v Y; and singletons
{(x,y)} for points (x,y) ¢ B. We conclude that there is an induced homeomorphism
between the quotient spaces. ([

Example 2.15 (Suspensions of shrinking wedges). For n € N, the n-th reduced
suspension of a based space may be defined as X" X =~ X AS™. If we apply Theorem
2.14 in the case J =N, Y; = S", and Y} is a single-point space for j > 2, then we
have canonical homeomorphisms

" (\/jeNXj) = (\/jeNXj> AST \/jeN(Xj A ST = \/jeNE"Xj‘

In particular, ¥"Hl,,, = H,, 1, for all m,n > 0.

Example 2.16 (Smash products of higher earrings). It is well-known that S™ A
S™ >~ §m+n - Consequently if H,, and H,, are the m-dimensional and n-dimensional
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Hawaiian earrings, then

Ho A B = (vieNsm) A (\/jeNSn>

~

Vel 257

~

\/(i,j)estm+n

Hm+n

12

1

I

Although, we have the identification H,, A H,, =~ H,,,, it is most natural to index
the wedge-summands of this space, which are m + n-spheres by pairs of integers.

Example 2.17 (Reduced cones of shrinking wedges). Since C, X = X A [0,1] is
the reduced cone over (X, (), we have

~

(\N/jejxj> A=\ a0 = O,

I

Cr <\7jeJXj>

In other words, the reduced cone over a shrinking wedge is canonically homeomor-
phic to the shrinking wedge of the reduced cones of the wedge-summand spaces.

Hence, a based map f :\/

~

if it extends to a map g : \/

X; — Y is null-homotopic rel. basepoint if and only

jeJ

jeJ

3. AN INFINITE ANALOGUE OF THE SMASH PRODUCT

Let {(X;,z;)}ien be a sequence of based spaces. According to Remark 2.3, we

may identify the shrinking wedge \/,.X; canonically as a subspace of the infinite
direct product [ ;o X; where X is identified with

{1} x {za} x -+ x {1} X Xj x {mip1} x -+

and the basepoint is by = (1,2, Z3,...). In this way, we may consider the quotient
space | [,y Xi/vz‘eNXi' Let ¢ : [[,enXi = 1lien Xi/VieNXi be the canonical
quotient map. For each m € N, we also have a quotient map ¢, : H?ll X, —
]_[?;1 Xi/ \/:’;1 X;. Notice that we have a commutative diagram where the top row
consists of projection maps and the bottom row consists of maps g, 41, induced
bY ¢ © Tmt1,m on the quotient space. We will let V,,, = [/, Xi/ V%, X; with
the point w,, € Z,, representing the image of \/7;1 X;. We also denote ¥ =

liLn (Yma gm+1,m)~
n
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p2
p3
=
HieN Xi e 4,3 Xl x X2 x X3 3,2 Xl x X2 2,1 Xl

[Tien Xi/\/ieNXi q3 © “°

Y 94,3 X1xXox X3 93,2 X1 xXo 92,1

\/ Xi1vXovXs X1vXo

X1
x, =

T

Certainly, ¢ is constant on the fibers of ¢,, o p,, and so there exists a unique map
Gm : HieN X; — Yy, such that ¢, 0 ¢ = ¢y © pm. Notice that gy41.m © Pmy10q =
Im+1,mO%dm+1°Pm+1 = gmOTm+4+1,mOPm+1 = gmOPm = ¢mOQ- Since q is surjective,
this gives gm11,m © @m+1 = ¢, for all m € N. Hence, there is a unique, continuous
map ¢ such that if g,, : Y — Y, are the projections of the limit, then g,, 0 ¢ = ¢u,.

Theorem 3.1. If X, is compact Hausdorff for all m € N, then

) EHIVAE RN [ EAVE
=1 =1

meN m

given by ¢(a) = (¢1(m), p2(m), d3(m),...) is a homeomorphism.

Proof. First, we check that ¢ is bijective. Let y = (21,20,23,...) € Y. If y =
(w1, wa,ws,...) then clearly ¢(q(bp)) = y. If 2,,, = wy, for some m, then z; = w;
for all ¢ < m. Therefore, if y # (w1, ws,ws,...), then there exists M € N such
that z,, # w,, for all m > M. In particular, for all m > M, there is a unique
point t,, € Y;, such that ¢, (tm) = 2Zm. Since gmi1,m(Zm+1) = zm and gmi1,m
agrees with 7,11, on Y41, it follows that mm,41.m(tmy1) = b, for all m = M.
Recursively define ¢; = m11(ti41) for 1 < ¢ < M — 1. Now (t1,t2,t3,...) €
@m(l_[:il Xiaﬂ-m+1,m) = HmGN Xm and ¢(q(t1,t2,t3, . )) =Y. This shows ¢) is
onto.

Suppose a = (a1,as,as,...) and b = (by,be,bs,...) are distinct elements of

[ [,eny Xm- Suppose a,b ¢ vmeNXm' Then

e there exists mo € N such that a,,, # bm,,

e there exists ji,j2 such that a;, # x; and a;, # z;,,

e there exists ki, ko such that by, # zx, and by, # zk,.
Let M = max{my, j1, j2, k1, k2}. Then ¢pr(a) # ¢ar(b), proving that ¢(a) # ¢(b).
The other case to consider is when a ¢ \/, . Xy and b€ \/, .y Xom. Then

e there exists ji,j2 such that a;, # x; and a;, # z;,,
o Opn(b) = wy, for all m e N.

Let M = max{j1,j2}. Then ¢p(a) # wy = ¢ar(b), proving ¢(a) # ¢(b).

meN
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As a quotient of a compact space, HieN X; / VieNXi is compact. Moreover, since
[ i, X; is compact Hausdorff, and \//-, X; is closed in the Ty space |[/-, X;,
it follows that Y,, is Hausdorff. Thus the inverse limit Y is Hausdorff. Since
¢ is a continuous bijection from a compact space to a Hausdorff space, it is a
homeomorphism. O

Remark 3.2. Each bonding map gm+1,m : Ym+1 — Yim admits a canonical section
Smm+1  Ym — Yp41. Therefore, we may identify a sequence of closed subspaces

of Y:
X1XX2CX1XX2XX3CX1XX2XX3XX4C

X vXy X vXoavXs  XivXovXsv X, o

The union Yy, = U Y. = U ﬁXi/VZlXi is dense in Y.

meN meNi=1
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