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Abstract. This note is dedicated to identifying basic topological equivalences

related to combinations of shrinking wedges (such as the n-dimensional ear-
ring), smash products, and infinite direct products.

1. Introduction and review of standard constructions

This note contains explicit proofs of basic equivalences and facts involving op-
erations on spaces that are important within wild algebraic topology. Certainly,
no originality is claimed as most results are fairly straightforward to prove. It is
possible that much of this is “folklore.” However, this note was a consequence of
taking the time to check that these results are true.

Shrinking wedges of spaces, like the earring space, play a prominent role in
the homotopy theory of Peano continua and other “wild” spaces that may not
have the homotopy type of a CW-complex. Standard constructions on spaces such
a products, wedges (one-point unions), suspensions, cones, smash products, and
various combinations of these spaces play an important role in ordinary algebraic
topology [3]. This note is dedicated to identifying some properties of their infinitary
analogues that are relevant to the progressive theory of “wild algebraic topology.”
Here the word “infinitary” refers to an operation with infinitely many inputs. Such
constructions include infinite direct products, shrinking wedges, and an infinite
analogue of the smash product.

Definition 1.1 (One-point Unions). The wedge of a family tpXi, xiq | i P Iu of
based spaces is the space

�
iPI Xi �

²
iPI Xi{� where the set txi | i P Iu is identified

to a single point b0. The point b0 is the basepoint; we sometimes refer to it as the
wedge-point. A set U �

�
iPI Xi is open if and only if U XXi is open in Xi for all

i P I. In other words,
�
iPI Xi has the weak topology with respect to the family

of subspaces tXi | i P Iu. This operation serves as the coproduct in the category
of based spaces. In particular, there are canonical embeddings Xi Ñ

�
iPI Xi for

each i, which map Xi onto the i-th “summand.”

Definition 1.2 (Direct Products). The direct product of a family tXi | i P Iu
of based spaces is the space

±
iPI Xi consisting of I-tuples pxiqiPI with xi P Xi,

which formally are choice functions x : I Ñ
²
iPI Xi such that xpiq P Xi for all

i P I. When ai P Xi is a given basepoint, we take paiqiPI to be the basepoint of the
product. We will give this space the product topology unless stated otherwise. If
I � t1, 2, . . . , nu, we may write this product as

±n
i�1Xi or X1 �X2 � � � � �Xn.
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Remark 1.3. For a finite collection tpXi, xiq | 1 ¤ i ¤ nu of based spaces, we
identify the wedge

�n
i�1Xi canonically as a subspace of

±n
i�1Xi where the i-th

summand of the wedge is identified with the subspace tx1u � tx2u � � � � � txi�1u �
Xi � txi�1u � � � � � txnu of the product.

Definition 1.4 (Smash Products). The smash product of two based spaces pX,x0q
and pY, y0q is the quotient space X ^ Y � X � Y {X _ Y , where we identify the
wedge X_Y is identified with X�ty0uYtx0u�Y as mentioned above. The image
of X _ Y in the quotient is the basepoint of X ^ Y . As special cases:

(1) if pSn, enq is the based n-sphere, then ΣnX � X ^ Sn is the n-th reduced
suspension of pX,x0q.

(2) if r0, 1s is the closed unit interval with basepoint 0, then C�X � X ^ r0, 1s
is the reduced cone of pX,x0q.

2. Shrinking wedges

A shrinking wedge of a countably infinite family of based spaces is exactly what
it sounds like. The underlying set is the same as the usual one-point union but we
give it a coarser topology so that the summands “shrink” toward the wedge-point.

Definition 2.1 (Shrinking Wedge). The shrinking wedge of countable set tpXj , xjqujPJ

of based spaces is space ��jPJpXj , xjq whose underlying set is the usual one-point

union ��jPJpXj , xjq with canonical basepoint b0. A set U is open in ��jPJXj if
U X Xj is open in Xj for all j P J and if Xj � U for all but finitely many j P J
whenever b0 P U . When the basepoints are clear from context, we may write the

shrinking wedge as ��jPJXj and if Xj � Z for all j P J , we may denote it as ��JZ.

Example 2.2. The special case En � ��NS
n is called the n-dimensional earring.

It is known that En is pn� 1q-connected and πnpEnq � ZN; see [1].

Remark 2.3. Let tpXi, xiquiPN be a sequence of based spaces. We may consider

the shrinking wedge ��iPNXi naturally as a subspace of the infinite direct product±
iPNXi where Xi is identified with

tx1u � tx2u � � � � �Xi�1 �Xi � txi�1u � � � �

and the basepoint is b0 � px1, x2, x3, . . . q.

Lemma 2.4. If tXi | i P Iu is a countably infinite collection of based spaces and
F � I is a finite subset, then

�ª
iPI
Xi �

�ª
iPF

Xi

�
_

��ª
iPIzF

Xi



.

Lemma 2.5. If tXi,j | pi, jq P I�Ju is a countable collection of based spaces, then�ª
pi,jqPI�J

Xi,j �
�ª

iPI

��ª
jPJ

Xi,j



.

Remark 2.6. Many topological properties pass from the spaces Xi to the shrink-

ing wedge ��iPIXi. For instance, if each Xi has one of the following properties,

then so does ��iPIXi: Hausdorff, regular, completely regular compact, metriz-
able, first countable, second countable, path-connected, path-connected and locally



THE TOPOLOGY OF SHRINKING WEDGES AND RELATED CONSTRUCTIONS 3

path-connected (as a combined property), among others. With some exceptions,
verifying these properties often amounts to observing that the property in ques-
tion is closed under forming countable direct products and closed subspaces (since��
iPIXi �

±
iPI Xi).

To prove general facts about shrinking wedges, it is convenient to consider the
following unbased analogue.

Definition 2.7. Given a countable (not necessarily ordered) collection of spaces

tXi | i P Iu, the shrinking disjoint union of this collection is the space �²iPIXi

whose underlying set is tx0u Y
²
iPI Xi where x0 is an added point. A set U is

open in �²iPIXi if and only if U XXi is open in Xi for all i P I and Xi � U for all
but finitely many i whenever x0 P U . We refer to x0 as the primary limit point of�²
iPIXi.

Note that the subspace
²
iPI Xi of�²iPIXi has the usual disjoint union topology.

We usually will consider �²iPIXi as a based space with basepoint x0. By enumer-

ating I, we may think of �²iPIXi as a sequence of disjoint spaces, “converging to”
x0.

Proposition 2.8. If tpXi, xiq | i P Iu is a countable collection of based spaces, then

the canonical map �²iPIXi Ñ ��
iPIXi identifying tx0u Y txi | i P Iu to the wedge

point b0 is a quotient map.

Proof. Let f denote the map�²iPIXi Ñ��iPIXi in question. Consider U ���iPIXi

such that f�1pUq is open. If b0 R U , then f maps f�1pUq bijectively onto U and
f�1pUq �

²
iPI Xi X U where Xi X U is open in Xi for each i. Thus U is open

in ��iPIXi. If b0 P U , then we have f�1pb0q � tx0u Y txi | i P Iu � f�1pUq. In
particular, U X Xi is an open neighborhood of xi in Xi. Moreover, since f�1pUq
is open, we have Xi � f�1pUq for all but finitely many i P I. We conclude that
U XXi is open in Xi for all i and that Xi � U for all but finitely many i P I. �

Remark 2.9. If X�
i � Xi Y txiu consists of the disjoint union of a space Xi and

an isolated basepoint xi, then ��iPIX
�
i ��²iPIXi.

The following lemma is straightforward to prove.

Lemma 2.10. If qi : Xi Ñ Yi, i P I is a countable collection of quotient maps,

then the induced based map �²iqi :�²iPIXi Ñ�²iPIYi is a quotient map.

Proof. Let q � �²iqi and suppose U � �²iPIYi such that q�1pUq is open. Since

q�1pUq X
²
iPI Xi �

²
iPI q

�1
i pU X Yiq is open, q�1

i pU X Yiq is open in Xi for all
i. Since qi is quotient, U X Yi is open in Yi for all i. Moreover, if y0 P U , then
x0 P q

�1pUq. In this case, we have Xi � q�1pUq for all but finitely many i and thus

Yi � U for all but finitely many i. We conclude that U is open in �²iPIYi. �

Corollary 2.11. If qi : pXi, xiq Ñ pYi, yiq, i P I is a countable collection of based

quotient maps, then the induced map ��iPIqi :��iPIXi Ñ��iPIYi is a quotient map.
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Proof. Consider the following commutative diagram. The vertical maps are quo-
tient by Proposition 2.8 and the top map is quotient by Lemma 2.10.

�²
iPIXi

�²
iPIqi //

��

�²
iPIXi

����
iPIXi ��

iPIqi

// ��
iPIYi

It follows from the universal property of quotient maps that the bottom map must
be quotient. �

Lemma 2.12. If x0 P A � ��iPIXi, and Ai � A X Xi for each i P I, then

A ���iPIAi and �ª
iPI
Xi

M
A �

�ª
iPI
pXi{Aiq.

Proof. Since A has the subspace topology inherited from ��iPIAi, every neighbor-

hood of the wedgepoint b0 in ��iPIAi contains Ai for all but finitely many i. Hence

A ���iPIAi. Let qi : Xi Ñ Xi{Ai be the quotient map collapsing Ai to a point. We
have the following commutative diagram where the vertical map f is the quotient

map collapsing A to a point and the diagonal map ��iPIqi is quotient by Corollary
2.11. ��

iPIXi

f

��

��
iPIqi

&&��
iPIXi

M
A

h
// ��

iPIpXi{Aiq

The bottom map h is an induced bijection since f and��iPIqi have identical fibers;
most importantly, the fiber of the respective wedgepoints under these maps is��
iPIAi. Since f and ��iPIqi are quotient maps, h is a homeomorphism. �

A continuous surjection f : A Ñ B is a biquotient map if for every open cover
U of a fiber f�1pbq then there exists finitely many sets U1, U2, . . . , Ur P U such
that fpU1 YU2 Y � � � YUnq contains a neighborhood of b. The notion of biquotient
map is due to E. Michael [2] and is well-known in general topology. In particular,
Michael showed that every biquotient map is quotient and arbitrary products of
biquotient maps are biquotient. It is easy to see that the natural quotient map�²
iPIXi Ñ ��

iPIXi is, in fact, biquotient since the fiber of the wedge point is the
compact set tx0u Y txi | i P Iu, which is homeomorphic to ω � 1. We have the
following consequence.

Lemma 2.13. Given two countable collections tXi | i P Iu and tYj | j P Ju, the

natural product map �²iPIXi ��²jPJYj Ñ
��
iPIXi ���jPJYj is a quotient map.

Theorem 2.14. Given any two countable collections of based spaces tXi | i P

Iu and tYj | j P Ju, there is a canonical homeomorphism ��
iPIXi ^��jPJYj ���

pi,jqPI�JXi ^ Yj.
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Proof. Let x0, y0, px0, y0q denote the respective primarily limit points of the shrink-

ing disjoint unions�²iPIXi,�²jPJYj , and�²pi,jqPI�JXi�Yj . Consider the following

commutative diagram�²
iPIXi ��²jPJYj

p1q

��

q
// �²

pi,jqPI�JXi � Yj

p3q

����
iPIXi ���jPJYj

p2q

��

�²
pi,jqPI�JXi ^ Yj

p4q

����
iPIXi ^��jPJYj

// ��
pi,jqPI�JXi ^ Yj

The map (1) is quotient by Lemma 2.13 and map (2) is quotient by the construction
of the smash product. Map map (3) is quotient by Lemma 2.10 and map (4) is
the quotient map from Proposition 2.8. Finally the horizontal map q is the map

that sends A �
�
tx0u ��²jYj

	
Y
��²

iXi � ty0u
	

to the limit point tpx0, y0qu of�²
pi,jqXi � Yj (notice that this is homeomorphic to �²iPIXi ^�²jPJYj) and is the

identity elsewhere. Since every neighborhood of A in�º
iPI
Xi �

�º
jPJ

Yj

contains Xi�Yj for all but finitely many pi, jq P I�J , it follows that q is a quotient
map. By carefully considering the fibers of the map (1), one can check the the fibers
of both compositions include the set B � A Y

²
pi,jqPI�J Xi _ Yj and singletons

tpx, yqu for points px, yq R B. We conclude that there is an induced homeomorphism
between the quotient spaces. �

Example 2.15 (Suspensions of shrinking wedges). For n P N, the n-th reduced
suspension of a based space may be defined as ΣnX � X^Sn. If we apply Theorem
2.14 in the case J � N, Y1 � Sn, and Yj is a single-point space for j ¥ 2, then we
have canonical homeomorphisms

Σn
��ª

jPN
Xj



�

��ª
jPN

Xj



^ Sn �

�ª
jPN

pXj ^ Snq �
�ª

jPN
ΣnXj .

In particular, ΣnEm � Em�n for all m,n ¥ 0.

Example 2.16 (Smash products of higher earrings). It is well-known that Sm ^
Sn � Sm�n. Consequently if Em and En are the m-dimensional and n-dimensional
earrings, then

Em ^ En �

��ª
iPN
Sm


^

��ª
jPN

Sn



�
�ª

pi,jqPN2
pSm ^ Snq

�
�ª

pi,jqPN2
Sm�n

� Em�n
Although, we have the identification Em ^ En � Em�n it is most natural to index
the wedge-summands of this space, which are m� n-spheres by pairs of integers.
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Example 2.17 (Reduced cones of shrinking wedges). Since C�X � X ^ r0, 1s is
the reduced cone over pX,x0q, we have

C�

��ª
jPJ

Xj



�

��ª
jPJ

Xj



^ r0, 1s �

�ª
jPJ

pXj ^ r0, 1sq �
�ª

jPJ
C�Xj

In other words, the reduced cone over a shrinking wedge is canonically homeomor-
phic to the shrinking wedge of the reduced cones of the wedge-summand spaces.

Hence, a based map f :��jPJXj Ñ Y is null-homotopic rel. basepoint if and only

if it extends to a map g :��jPJC�Xj Ñ Y .

3. An infinite analogue of the smash product

Let tpXi, xiquiPN be a sequence of based spaces. According to Remark 2.3, we

may identify the shrinking wedge ��iPNXi canonically as a subspace of the infinite
direct product

±
iPNXi where Xi is identified with

tx1u � tx2u � � � � � txi�1u �Xi � txi�1u � � � �

and the basepoint is b0 � px1, x2, x3, . . . q. In this way, we may consider the quotient

space
±
iPNXi

M��
iPNXi. Let q :

±
iPNXi Ñ

±
iPNXi

M��
iPNXi be the canonical

quotient map. For each m P N, we also have a quotient map qm :
±m
i�1Xi Ñ±m

i�1Xi

M�m
i�1Xi. Notice that we have a commutative diagram where the top row

consists of projection maps and the bottom row consists of maps gm�1,m induced

by qm � πm�1,m on the quotient space. We will let Ym �
±m
i�1Xi

M�m
i�1Xi with

the point wm P Zm representing the image of
�m
i�1Xi. We also denote Y �

limÐÝ
n

pYm, gm�1,mq.

±
iPNXi

p3
,,

p2

))

p1

''

q

��

� � �
π4,3

// X1 �X2 �X3

q3

��

π3,2

// X1 �X2

q2

��

π2,1

// X1

q1

��

±
iPNXi

M��
iPNXi

φ

��

Y

g3

22

g2

55

g1

66
� � �

g4,3
// X1�X2�X3

X1_X2_X3

g3,2
// X1�X2

X1_X2

g2,1
// X1

X1
� �

Certainly, q is constant on the fibers of qm � pm and so there exists a unique map

φm :
±
iPNXi

M��
iPNXi Ñ Ym such that φm � q � qm � pm. Notice that

gm�1,m�φm�1�q � gm�1,m�qm�1�pm�1 � qm�πm�1,m�pm�1 � qm�pm � φm�q.
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Since q is surjective, this gives gm�1,m � φm�1 � φm for all m P N. Hence, there is
a unique, continuous map φ such that if gm : Y Ñ Ym are the projections of the
limit, then gm � φ � φm.

Theorem 3.1. If Xm is compact Hausdorff for all m P N, then

φ :
¹
mPN

Xm

M�ª
mPN

Xm Ñ limÐÝ
m

�
m¹
i�1

Xi

M mª
i�1

Xi, gm�1,m

�
given by φpaq � pφ1pmq, φ2pmq, φ3pmq, . . . q is a homeomorphism.

Proof. First, we check that φ is bijective. Let y � pz1, z2, z3, . . . q P Y . If y �
pw1, w2, w3, . . . q then clearly φpqpb0qq � y. If zm � wm for some m, then zi � wi
for all i ¤ m. Therefore, if y � pw1, w2, w3, . . . q, then there exists M P N such
that zm � wm for all m ¥ M . In particular, for all m ¥ M , there is a unique
point tm P Ym such that qmptmq � zm. Since gm�1,mpzm�1q � zm and gm�1,m

agrees with πm�1,m on Ym�1, it follows that πm�1,mptm�1q � tm for all m ¥ M .
Recursively define ti � πi�1,ipti�1q for 1 ¤ i ¤ M � 1. Now pt1, t2, t3, . . . q P
limÐÝmp

±m
i�1Xi, πm�1,mq �

±
mPNXm and φpqpt1, t2, t3, . . . qq � y. This shows φ is

onto.
Suppose a � pa1, a2, a3, . . . q and b � pb1, b2, b3, . . . q are distinct elements of±
mPNXm. Suppose a, b R��mPNXm. Then

 there exists m0 P N such that am0
� bm0

,
 there exists j1, j2 such that aj1 � xj1 and aj2 � xj2 ,
 there exists k1, k2 such that bk1 � xk1 and bk2 � xk2 .

Let M � maxtm0, j1, j2, k1, k2u. Then φM paq � φM pbq, proving that φpaq � φpbq.

The other case to consider is when a R��mPNXm and b P��mPNXm. Then

 there exists j1, j2 such that aj1 � xj1 and aj2 � xj2 ,
 φmpbq � wm for all m P N.

Let M � maxtj1, j2u. Then φM paq � wm � φM pbq, proving φpaq � φpbq.

As a quotient of a compact space,
±
iPNXi

M��
iPNXi is compact. Moreover, since±m

i�1Xi is compact Hausdorff, and
�m
i�1Xi is closed in the T4 space

±m
i�1Xi, it

follows that each Ym is Hausdorff. Thus the inverse limit Y is Hausdorff. Since
φ is a continuous bijection from a compact space to a Hausdorff space, it is a
homeomorphism. �

Remark 3.2. Each bonding map gm�1,m : Ym�1 Ñ Ym admits a canonical section
sm,m�1 : Ym Ñ Ym�1. Therefore, we may identify a sequence of closed subspaces
of Y :

� �
X1 �X2

X1 _X2
�
X1 �X2 �X3

X1 _X2 _X3
�
X1 �X2 �X3 �X4

X1 _X2 _X3 _X4
� � � �

The union Yfs �
¤
mPN

Ym �
¤
mPN

m¹
i�1

Xi

M�ªm

i�1
Xi is dense in Y .
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