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Abstract. For a path-connected metric space X, the n-th homotopy group

πn(X,x0) inherits a natural pseudometric from the n-th iterated loop space
with the uniform metric. When X is compact, the induced pseudometric

topology is independent of the original choice of metric on X. In the case

of the fundamental group (n = 1), the induced pseudometric topology agrees
with previously studied topological structures on π1(X,x0) which are closely

related to covering space theory and shape theory.

1. Introduction

Topologies, metrics, and other sturcutres on homotopy groups can be used to
retain information about a space that is not detected by the purely algebraic struc-
ture. For example, the natural quotient topology on π1(X,x0) retains a great deal
of information about the covering spaces [19], semicovering spaces [3], and other
generalized covering spaces [14] over X even when X does not admit a traditional
universal covering. In this note1, we explore a natural approach to defining distance
between homotopy classes of maps in metric spaces.

Throughout, let (X, d) be a path-connected metric space and x0 ∈ X. Let
Ωn(X,x0) be the space of maps α : ([0, 1]n, ∂[0, 1]n) → (X,x0) based at x0 with
the metric of uniform convergence. Let α−(t1, t2, . . . , tn) = α(1 − t1, t2, . . . , tn) be
the reverse of α and if α1, α2, . . . , αn is a sequence of loops, then α1 · α2 · · ·αn is
the usual n-fold concatenation defined as αi on

[
i−1
n , in

]
× [0, 1]n−1.

It is well-known that the uniform metric topology agrees with the usual compact-
open topology on Ωn(X,x0). Let πn(X,x0) denote the usual n-th homotopy group
and π : Ωn(X,x0) → πn(X,x0) denote the canonical map taking a loop α to its
homotopy class π(α) = [α].

We begin by comparing three previously studied topologies on πn(X,x0).

1.1. The quotient topology. Let πqtopn (X,x0) denote the n-th homotopy group
with the quotient topology with respect to the canonical map π : Ωn(X,x0) →
πn(X,x0). It is known that this topology gives πn(X,x0) the structure of a qua-
sitopological group [8, 2] (in the sense that inversion is continuous and multiplication
is continuous in each variable [1]) which can fail to be a topological group [10, 11]
even when X is a Peano continuum. The group πqtopn (X,x0) was previously called
n-th topological homotopy group [16] before learning of the failure of multiplication
to be continuous. The authors have sometimes referred to it the n-th quasitopology
homotopy group [6]. Regardless of the name used, the natural quotient topology on
homotopy groups often retains a great deal of information about the local structure

1This paper was written in 2014 and has remained unpublished simply because we never came
back to finish it. The formatting and bibliography were updated on 10/15/2021.
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of a space, such as the homotopically path-Hausdorff property [6, 12, 18]. Weaker
properties like the subgroup-relative homotopically Hausdorff property [14] (see also
[9, 20, 21] for the absolute property) are not completely classified by this topology
but are certainly related.

1.2. The τ-topology. In [4], it was observed that for any quasitopological group
G, there is a finest group topology on the group G, which is coarser than that of
G. The resulting topological group is denoted τ(G). In otherwords, the category
of topological groups is a reflective subcategory of the category of quasitopological
groups, where τ is the reflection functor. In the case of fundamental groups, the
τ -reflection πτn(X,x0) = τ(πqtopn (X,x0)) is a topological group. While the topology
of πτn(X,x0) is coarser than that of πqtopn (X,x0), it is the finest group topology
on πn(X,x0) such that π : Ωn(X,x0) → πn(X,x0) is continuous. This universal
property has provided applications to the general theory of topological groups [5]
(in particular, free topological groups).

1.3. The shape topology. We refer the reader to [7][17] for a more detailed treat-
ment of the first shape group and the “shape-topology” in the case of the fundamen-
tal group. The construction for fundamental groups of based spaces is addressed
specifically in [7].

Let cov(X) be the directed set of pairs (U , U0) where U is a locally finite open
cover of X and U0 is a distinguished element of U containing x0. Note cov(X)
is directed by refinement. Given (U , U0) ∈ cov(X) let N(U ) be the abstract
simplicial complex which is the nerve of U . In particular, U is the vertex set of
U and the n vertices U1, ..., Un span an n-simplex ⇔

⋂n
i=1 Ui 6= ∅. The geometric

realization |N(U )| is a polyhedron and thus πqtopn (|N(U )|, U0) is a discrete group.
Given a pair (V , V0) which refines (U , U0), a simplicial map pU V : |N(V )| →

|N(U )| is constructed by sending a vertex V ∈ V to some U ∈ U for which
V ⊆ U (in particular, V0 is mapped to U0) and extending linearly. The map
pU V is unique up to homotopy and thus induces a unique homomorphism pU V ∗ :
πn(|N(V )|, V0)→ πn(|N(U )|, U0). The inverse system

(πn(|N(U )|, U0), pU V ∗, cov(X))

of discrete groups is the fundamental pro-group and the limit π̌n(X,x0) (topologized
with the usual inverse limit topology) is the n-th shape homotopy group.

Given a partition of unity {φU}U∈U subordinated to U and such that φU0(x0) =
1, a map pU : X → |N(U )| is constructed by taking φU (x) (for x ∈ U , U ∈ U )
to be the barycentric coordinate of pU (x) corresponding to the vertex U . The
induced continuous homomorphism pU ∗ : πn(X,x0) → πn(|N(U )|, U0) satisfies
pU ∗ ◦ pU V ∗ = pV ∗ whenever (V , V0) refines (U , U0). Thus there is a canonical,
continuous homomorphism ψ : πn(X,x0)→ π̌n(X,x0) to the first shape group.

The shape topology on πn(X,x0) is the initial (or pull-back) topology with respect
to the first shape homomorphism ψ : πn(X,x0)→ π̌n(X,x0). Thus U ⊂ πn(X,x0)
is open ⇔ U = ψ−1(V ) for an open set V ⊂ π̌n(X,x0). It is easy to check that the
shape topology gives πn(X,x0) the structure of a topological group.

Proposition 1. [4] The shape topology of πshapen (X,x0) is coarser than that of
πτn(X,x0).

Definition 2. The space X is πn-shape injective if ψ : πn(X,x0) → π̌n(X,x0) is
a monomorphism.
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Clearly πshapen (X,x0) is Hausdorff ⇔ X is πn-shape injective.

2. A pseudometric on the n-th homotopy group

Let (X, d) be a path-connected metric space and give Ωn(X,x0) the uniform
metric µ(α, β) = supt∈[0,1]n{d(α(t), β(t))}. Observe that

µ(α · α′, β · β′) = max{µ(α, β), µ(α′, β′)}

and µ(α, β) = µ(α−, β−).
We consider the following function ρ : πn(X,x0) × πn(X,x0) → [0,∞) on the

homotopy group πn(X,x0):

ρ([α], [β]) = inf{µ(α, β) | α ∈ [α], β ∈ [β]}.

We claim that ρ is a pseudometric on πn(X,x0). Certinaly ρ is symmetric and
ρ([α], [α]) = 0, however, it requires a little more work to verify the triangle inequal-
ity. Our proof of the triangle inequality applies to all n ≥ 1 and thus we do not
treat the abelian case (n ≥ 2) separately.

Remark 3. In general, if X is a metric space, ∼ is an equivalence relation, and
Y = X/∼ (where [a] denotes the class of a ∈ X), the definition ρ : Y ×Y → [0,∞),
ρ([a], [b]) = inf{d(a, b) | a ∈ [a], b ∈ [b]} need not satisfy the triangle inequality.
Thus in our situation, we must make use of the group structure of πn(X,x0) and
the nature of the uniform metric µ in order to verify the triangle inequality.

Lemma 4. Inversion [α] 7→ [α−] is an isometry.

Proof. Since µ(α, β) = µ(α−, β−), it is clear that ρ([α], [β]) = ρ([α−], [β−]) �

Lemma 5. All right translations [α] 7→ [α · α′] and left translations [α] 7→ [α′ · α]
are isometries.

Proof. Note that µ(α · α′, β · α′) = µ(α, β) and thus ρ([α], [β]) = ρ([α · α′], [β · α′]).
The argument for left translations is the same. �

Lemma 6. For any maps α, β ∈ Ωn(X,x0), ρ([α·β], [c]) ≤ max {ρ([α], [c]), ρ([β], [c])}.

Proof. Suppose [α], [β] ∈ πn(X,x0) and ε > 0. Find α1 ∈ [α], β1 ∈ [β], and
c1, c2 ∈ [c] such that µ(α1, c1) < ρ([α], [c]) + ε

2 and µ(β1, c2) < ρ([β], [c]) + ε
2 . Note

that

µ(α1 · β1, c1 · c2) = max{µ(α1, c1), µ(β1, c2)}

< max
{
ρ([α], [c]) +

ε

2
, ρ([β], [c]) +

ε

2

}
< max {ρ([α], [c]), ρ([β], [c])}+ ε

Thus ρ([α · β], [c]) ≤ max {ρ([α], [c]), ρ([β], [c])}. �

Proposition 7. ρ is a pseudometric on πn(X,x0).
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Proof. As noted above, it suffices to verify the triangle inequality. Let [α], [β], [γ] ∈
πn(X,x0). Using the previous three lemmas, we have:

ρ([α], [γ]) = ρ([α · γ−], [c])

= ρ([α · β− · β · γ−], [c])

≤ max{ρ([α · β−], [c]), ρ([β · γ−], [c])}
= max{ρ([α · β−], [c]), ρ([γ · β−], [c])}
≤ ρ([α · β−], [c]) + ρ([γ · β−], [c])

= ρ([α], [β]) + ρ([γ], [β])

= ρ([α], [β]) + ρ([β], [γ])

�

Theorem 8. Equipped with the topology induced by the pseudometric ρ, πn(X,x0)
is a topological group whose open balls Bρ([c], r) are open normal subgroups.

Proof. Since the open balls Bρ([c], r) form a neighborhood base at [c], it will fol-
low that πn(X,x0) is a topological group once we show that Bρ([c], r) is an open
subgroup.

Since ρ([α], [c]) = ρ([α−], [c]), Bρ([c], r) is closed under inversion. Additionally,

ρ([γ · α · γ−], [c]) = ρ([α], [γ− · γ]) = ρ([α], [c])

for any [γ] ∈ πn(X,x0). Thus Bρ([c], r) is closed under conjugation (particularly
when n = 1). Finally, suppose ρ([α], [c]), ρ([β], [c]) < r. Then ρ([α · β], [c]) ≤
max {ρ([α], [c]), ρ([β], [c])} < r by Lemma 6 and it follows that Bρ([c], r) is closed
under multiplication. �

Let πmetn (X,x0) denote the group with topology induced by the pseudometric ρ.
We call this topology simply the pseudometric topology. Since translations and
inversion in πmetn (X,x0) are isometries and there is a neighborhood base of open
normal subgroups at the identity element, it is clear that πmetn (X,x0) is a topological
group. Since open subgroups of topological groups are also closed, πmetn (X,x0) is
zero-dimensional. On the other hand, πmetn (X,x0) need not be Hausdorff, since
the closed normal subgroup

⋂
r>0Bρ([c], r) = {[α] ∈ π1(X,x0) | ρ([α], [c]) = 0},

is the closure of the identity element and is non-empty if and only if there are
sequences of maps αk, βk ∈ Ωn(X,x0) such that [αk] = [αk+1], [βk] = [βk+1] and
lim
k→∞

µ(αk, βk) = 0.

The following example illustrates that when X is non-compact the pseudometric
on πmetn (X,x0) is dependent on the metric d on X.

Example 9. Consider the cylinder X = R × Sn with basepoint x0 = (1, b). It
is easy to see that with the natural product metric d1, the resulting pseudometric
ρ1 on π1(R × Sn, x0) is discrete. For instance, πmetn (Sn, (1, 0)) is discrete and
we may then apply Proposition 10 to the projection (and homotopy equivalence)
R× Sn → Sn.

On the other hand, we may give R × Sn the metric d2 of the homeomorphic
punctured plane Rn+1\{0}. Let x0 = (1, 0, 0, ..., 0) ∈ Rn+1\{0} be the basepoint
and ρ2 denote the resulting pseudometric on πn(X,x0). Take αn : [0, 1] → X to
be the linear path from x0 to (1/n, 0, ..., 0) and let γn be the embedding of the
n-sphere of radius 1/n centered at the origin. Now consider the maps αn ∗ γn
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(where ∗ indicates the usual π1-action on πn) all of which represent a generator
g of πn(X,x0) ∼= Z. We also consider the null-homotopic maps αn ∗ cn where
cn ∈ Ωn(X,x0) is the constant map. But

lim
n→∞

µ(αn ∗ cn, αn ∗ γn) = 0.

Thus ρ2(g, 1) = 0 and it follows that the resulting pseudometric group is indiscrete.

The previous example shows that in general (non-compact) situations, the pseu-
dometric structure on πn(X,x0) is not an invariant of homeomorphism type. Rather,
it is an invariant of isometry type for metric spaces. Perhaps, there is some geomet-
ric relation (weaker than isometry) on metric spaces under which πmetn is invariant.
However, the authors have not exactly identified what such a thing could be.

Proposition 10. If f : (X,x0)→ (Y, y0) is a uniformly continuous map, then the
induced homomorphism f∗ : πmetn (X,x0)→ πmetn (Y, y0) is continuous.

Proof. Suppose ε > 0. There is a δ > 0 such that µ(α, β) < δ⇒ µ(f◦α, f◦β) < ε/2.
Suppose ρ([α], [c]) < δ. There are α ∈ [α], β ∈ [c] such that µ(α, β) < δ. Thus
µ(f ◦ α, f ◦ β) < ε. It follows that ρ([f ◦ α], [c]) = ρ([f ◦ α], [f ◦ β]) < ε. �

Corollary 11. If X is compact, then the topology of πmetn (X,x0) is independent of
the choice of metric on X.

Proof. Suppose metrics d1 and d2 on X induce the same topology. Let ρ1 and ρ2
be the respective pseudometrics on πqtop1 (X,x0). Since X is compact, the identity
maps id : (X, d1) → (X, d2) and id : (X, d2) → (X, d1) are uniformly continu-
ous. Consequently, the induced homomorphisms on πn(X,x0) (with the respective
pseudometrics) are inverse isomorphisms. �

We also observe that, in general, the isomorphism class of the topological group
πmetn (X,x0) does not depend on the choice of basepoint. Recall that for any path
γ : [0, 1] → X, there is a natural map Ωn(X, γ(1)) → Ωn(X, γ(0)), β 7→ γ ∗ β
which induces a change of basepoint isomorphism Γ : πn(X, γ(1)) → πn(X, γ(0)).
When γ is a loop based at x0, these maps induces the usual action of π1(X,x0) on
πn(X,x0). In the case that n = 1, this action is the action of π1(X,x0) on itself by
conjugation.

Proposition 12. For any path γ : [0, 1]→ X, the group isomorphism

Γ : πmetn (X, γ(1))→ πmetn (X, γ(0)),

Γ([β]) = [γ ∗ β] is an isometry.

Proof. For all α, β ∈ Ωn(X, γ(1)), we have µ(α, β) = µ(γ ∗ α, γ ∗ β) and thus

ρ([γ ∗ α], [γ ∗ β]) ≤ ρ([α], [β]).

Thus Γ is non-expansive. The inverse Γ−1 : πmet1 (X, γ(0)) → πmet1 (X, γ(1)),
Γ−1([β]) = [γ− ∗ β] is non-expansive for the same reason (replacing γ with γ−).
Thus Γ is an isometry. �

Corollary 13. The fundamental group π1(X,x0) acts on πmetn (X,x0) by isometry.

Finally, we compare the pseudometric topology to the quotient and τ -topologies.
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Proposition 14. The function π : Ω(X,x0) → πmet1 (X,x0), π(α) = [α] is con-

tinuous. Thus the topology of both πqtop1 (X,x0) and πτ1 (X,x0) is finer than that of
πmet1 (X,x0).

Proof. Suppose αn → α in Ω(X,x0) and ε > 0. There is an N such that µ(α, αn) <
ε for n ≥ N . Thus ρ([α], [αn]) < ε for n ≥ N showing that [αn]→ [α]. �

2.1. Compact metric spaces. In this section, we consider the pseudometric
topology of πmet1 (X,x0) when the metric space X is compact.

Lemma 15. If X is compact, locally path-connected, and semi-locally simply con-
nected, then πmet1 (X,x0) is discrete.

Proof. �

Example 16. If X is a finite polyhedron or a compact manifold, then πmet1 (X,x0)
is discrete.

Lemma 17. If X is compact, then the pseudometric topology of πmet1 (X,x0) is

finer than that of πshape1 (X,x0).

Proof. Since X is compact, we may assume the pro-fundamental group is of the
form

(π1(Xn, xn), pn,n+1,N),

that is, indexed by the natural numbers N. Moreover, since X is compact, Xn is
a finite (hence compact) polyhedron for each n ≥ 1. By Lemma 15, πmet1 (Xn, xn)
is discrete for each n ≥ 1. Consequently, the inverse limit lim←−n π1(Xn, xn) is

isomorphic to the shape group π̌1(X,x0) with the usual inverse limit topology.
Note that since X is compact, the canonical maps pn : X → Xn inducing shape
map ψ : π1(X,x0) → π̌1(X,x0) are uniformly continuous. By Proposition 10,
the homomorphisms (pn)∗ : πmet1 (X,x0) → πmet1 (Xn, x0) are continuous and thus
ψ : πmet1 (X,x0) → lim←−n π1(Xn, xn) = π̌1(X,x0) is continuous. Since shape topol-

ogy on π1(X,x0) is the coarsest topology on π1(X,x0) such that ψ is continuous,
the pseudometric topology must be finer. �

Remark 18. Cerainly the previous lemma fails when X is no longer required
to be compact. If X = R2\{(0, 0)} is the punctured plane as in Example 9,

then πmet1 (X,x0) is the indiscrete group of integers whereas πshape1 (X,x0) is the
discrete group of integers. Thus the identity homomorphism ψ : πmet1 (X,x0) →
πshape1 (X,x0) is not continuous.

For a general topological space X and open cover U of X, recall the Spanier
group of X with respect to U is the normal subgroup πs(U , x0) of π1(X,x0)
generated by elements [α · γ · α−] ∈ π1(X,x0) where γ has image in some U ∈ U
[19]. We recall a few known facts abotu Spanier groups. The first Lemma is proven
directly in [15] and also follows from arguments in Section 3.2 of [6].

Lemma 19. [15] If X is locally path connected, then πs(U , x0) is open in the

quasitopological fundamental group πqtop1 (X,x0). Moreover, for every open normal

subgroup N ⊆ πqtop1 (X,x0), there is an open cover U of X such that πs(U , x0) ⊆
N .
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Lemma 20. [7] If X is a locally path connected metric space, then the Spanier
groups πs(U , x0), U ∈ cov(X) form a neighborhood base at the identity element in

πshape1 (X,x0) (the fundamental group with the shape topology).

Theorem 21. If X is a Peano continuum, then the pseudometric topology and
shape topology on π1(X,x0) agree.

Proof. By Lemma 17, it suffices to show the open balls Bρ([c], r), r > 0 at the

identity element are open in the shape topology of πshape1 (X,x0). Recall that by
Theorem 8, Bρ([c], r) is a normal subgroups of π1(X,x0). Since the quotient topol-

ogy of πqtop1 (X,x0) is finer than that of πmet1 (X,x0) (Proposition 14), Bρ([c], r) is

an open normal subgroup of πqtop1 (X,x0). By Lemma 19, there is an open cover
U of X such that πs(U , x0) ⊆ Bρ([c], r). By Lemma 20, πs(U , x0) is open in the

shape topology of πshape1 (X,x0). Since Bρ([c], r) decomposes as a union of the open

cosets of πs(U , x0), Bρ([c], r) is open in πshape1 (X,x0). �

Corollary 22. For a Peano continuum X, the following are equivalent:

(1) ρ is a metric,
(2) πmet1 (X,x0) is T4,
(3) X is π1-shape injective.

Proof. (1)⇒ (2) if ρ is a metric, then πmet1 (X,x0) is a metrizable topological group
and is necessarily T4. (2)⇒ (3) If πmet1 (X,x0) is T4, then πmet1 (X,x0) is Hausdorff.

Since πmet1 (X,x0) ∼= πshape1 (X,x0), it follows that ψ : π1(X,x0) → π̌1(X,x0) is
injective. (3) ⇒ (1) If ψ : π1(X,x0) → π̌1(X,x0) is injective, then πmet1 (X,x0) ∼=
πshape1 (X,x0) is Hausdorff. Since the topology of πmet1 (X,x0) is generated by the
pseudometric ρ, ρ is a metric. �

Another way to look at the previous Corollary is that X fails to be π1-shape
injective ⇔ there are sequences of loops αn, βn with [αn] = [αn+1], [βn] = [βn+1]
for all n ≥ 1, and lim

n→∞
µ(αn, βn) = 0 but such that [αn] 6= [βn].

It is clear from Remark 18 that Theorem 21 and Corollary 22 can fail to hold
for non-compact metrix spaces. We also show that the assumption of local path
connectedness cannot be removed using an example from [9, 13].

Example 23. Consider the following subsets of R3 defined using cylindrical coor-

dinates. Let Y =
{

(r, θ, z) | 1 < r < 2, z = sin
(

1
r−1

)}
and Z = {(r, θ, z) | 0 ≤ r ≤

1,−1 ≤ z ≤ 1}. Observe that Y ∪ Z can be obtained by rotating the (Cartesian
coordinate-defined) space

([0, 1]× {0} × [−1, 1]) ∪
{

(x, 0, z) | 1 < x ≤ 2, z = sin

(
1

x− 1

)}
in the xz-axis about the z-axis. Let A ⊂ R3 be an arc connected the cylindrical
points (0, 0, 1) and (2, 0, sin(1)) and whose interior is disjoint from Y ∪ Z. Finally,
let X = Y ∪ Z ∪A.

It is easy to see that π1(X,x0) ∼= Z and π̌1(X,x0) ∼= Z, however the shape

homomorphism ψ : π1(X,x0)→ π̌1(X,x0) is constant. Consequently, πshape1 (X,x0)
is indiscrete. On the other hand, it is not too difficult to verify that πmet1 (X,x0) is
discrete.
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Finally, we note a connection to covering space theory. If X is locally path

connected and metrizable, then the open normal subgroups of πshape1 (X,x0) are
classified by the regular covering maps over X [7]. Since the open normal subgroups

form a basis at the identity in πshape1 (X,x0) (by definition of this topology), we have
the following consequence.

Corollary 24. Let X be a Peano continnum. Then a subgroup H ≤ πmet1 (X,x0)
is open if and only if there exists a covering map p : (Y, y0) → (X,x0) such that
p#(π1(Y, y0)) = H.
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