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Abstract. It is a well-known fact that every path-connected Hausdorff space

is arcwise connected. Typically, this result is viewed as a consequence of a

sequence of fairly technical results from continuum theory. In this note, we
exhibit a direct and simple proof of this statement, which makes explicit use of

Zorn’s Lemma. Additionally, by carefully breaking down the proof, we identify

a modest improvement to a class of spaces relevant to algebraic topology.

The following theorem is a well-established and commonly used result from gen-
eral topology, which can be found in many introductory and reference textbooks
on the subject, e.g. [6, 8, 10, 11, 13].

Theorem 1. Every path-connected Hausdorff space is arcwise connected.

This result is typically proved using a combination of basic general topology,
metrization theory, and the “Arcwise Connectedness Theorem,” which asserts that
any locally connected continuum (connected, compact metric space), is arcwise
connected. To prove the Arcwise Connectedness Theorem, one is required one to
construct an arc between two points without prior knowledge that even one non-
constant path in the space exists. Consequently, proofs of this theorem are quite
delicate. In fact, several authors of well-known topology textbooks have made criti-
cal oversights in the proof [1]. It is possible that the popularity of treating Theorem
1 as a consequence of the Arcwise Connectedness Theorem, has shadowed elemen-
tary proofs and potential generalizations of Theorem 1. The author believes that
having a variety of proofs for one result can often be beneficial. In this expository
note, we give a direct, elementary proof of Theorem 1 using Zorn’s Lemma. We
find this proof to be conceptually simpler than other known proofs and a nice ex-
ample of how the axiom of choice can sometimes ease technicalities one might face
if intentionally trying to avoid the axiom of choice.

The primary difficulty in proving Theorem 1 directly is ensuring that one can
always replace a path with an injective path. We must begin with an arbitrary non-
constant path α : r0, 1s Ñ X (which may be space-filling) and search for a collection
of pairwise-disjoint intervals pa, bq � r0, 1s such that α|ra,bs is a loop. We refer to
such a collection as a loop-cancellation of α. Provided that a loop-cancellation is
maximal in the partial order of all loop-cancellations of α, we may then “pinch
off” or “delete” the corresponding subloops to obtain an injective path. To verify
the existence of a maximal loop-cancellation, we employ the axiom of choice in the
form of Zorn’s Lemma.

Date: September 9, 2021.
2010 Mathematics Subject Classification. Primary 55Q52 , 55Q35 ; Secondary 08A65 .
Key words and phrases. path connected space, arcwise connected space, ∆-Hausdorff space.

1



2 J. BRAZAS

The author knows of two other published proofs of Theorem 1, which also take
the approach of deleting loops from paths. We take a moment to mention a few
things about them.

First, is S.B. Nadler’s proof in [11, Theorem 8.23]. Here, Theorem 1 is proved for
locally path-connected continua and then extended to all Hausdorff spaces using
a metrization theorem. However, much like other textbook proofs, Nadler’s line
of argument is indirect, relying on a variety of far more general results, such as
the“Maximum-Minimum Theorem” [11, Exercise 4.34]. The Maximum-Minimum
Theorem uses the compactness of the hyperspace of compact subsets of r0, 1s to
allow one to find, what we are calling, a “maximal loop-cancellation” without ap-
pealing to the axiom of choice.

Second, is a beautiful and direct proof by R. Börger in the mostly overlooked
note [2]. This proof, as far as the author can tell, is the only published direct
proof of Theorem 1. Rather than focusing on open sets as we do, Börger takes
the dual approach of constructing a nested sequence of closed sets A1 � A2 � � � �
and, essentially, works to show the components of the complement of

�
nAn form a

maximal loop-cancellation. Börger mentions in the introduction “I am indebted to
K.P. Hart for some simplifications, particularly for avoiding use of Zorn’s lemma.”
Hence, we do not doubt that Börger knew of a proof, which is similar in spirit to
the one in this note.

Certainly, one could argue that our proof is logically redundant, because it un-
necessarily uses the axiom of choice. However, there are often many benefits to
exploring different proofs of well-known results. Moreover, there is a certain con-
ceptual simplicity to our proof that the author does not find in any of the other
methods of proof. Indeed, some of the technical “weight” of other proofs appears
to be absorbed by Zorn’s Lemma. Those who freely use the axiom of choice may
find it preferable.

Finally, in Section 2, we note that by closely breaking down our “from scratch”
proof, it is possible to prove a modest generalization of Theorem 1 that replaces the
“Hausdorff” hypothesis with a strictly weaker property that is relevant to categories
commonly used in algebraic topology (see Theorem 7).

1. A proof of Theorem 1

First, we establish some notation and terminology. A path is a continuous func-
tion α : ra, bs Ñ X from a closed real interval ra, bs. If αpaq � x and αpbq � y, we
say that α is a path from x to y. If αpaq � αpbq, we will refer to α as a loop. Often,
we will use the closed unit interval r0, 1s to be the domain of a path. Given paths
α : ra, bs Ñ X and β : rc, ds Ñ X, we write α � β if α � β � φ for some increas-
ing homeomorphism φ : ra, bs Ñ rc, ds and we say that α is a reparameterization
of β. If α : r0, 1s Ñ X is a path, then α�ptq � αp1 � tq is the reverse path. If
α, β : r0, 1s Ñ X are paths with αp1q � βp0q, then α � β : r0, 1s Ñ X denotes the
usual concatenation of the two paths.

Definition. A space X is

(1) path connected if whenever x, y P X, there exists a path from x to y,
(2) arcwise connected if whenever x � y in X, there exists a path α : r0, 1s Ñ X

from x to y, which is a topological embedding, i.e. a homeomorphism onto
its image.
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Certainly, arcwise connected ñ path connected. We do not consider “mono-
tone” paths (those which have connected fibers) as being of separate interest from
injective-paths since a quotient map argument shows that every monotone path in
a T1 space may be replaced by an injective path with the same image.

Toward our proposed generalization of Theorem 1, we give the following defini-
tion.

Definition. We say that a space X permits loop deletion if whenever α : r0, 1s Ñ X
is a path and there exist 0 ¤ � � � ¤ a3 ¤ a2 ¤ a1   b1 ¤ b2 ¤ b3 ¤ � � � ¤ 1 such
that tanu Ñ 0, tbnu Ñ 1, and αpanq � αpbnq for all n P N, then αp0q � αp1q.

Intuitively, if X permits loop deletion, then the scenario illustrated in Figure
1 cannot occur, that is, there cannot exist paths α, β : r0, 1s Ñ X such that
αp1{nq � βp1{nq for all n P N and αp0q � βp0q.

α(0)

β(0)

α

β

t=1 t=1/2 t=1/3 ...

Figure 1. In a space that permits loop deletion, there cannot be
two paths α, β which agree on a sequence converging to 0 but for
which αp0q � βp0q.

Remark 1. If a space X is Hausdorff, then convergent sequences in X have unique
limits. Hence, every Hausdorff space permits loop deletion.

Given a path α : r0, 1s Ñ X, a loop-cancellation of α is a set U of pairwise-
disjoint open intervals in r0, 1s such that for each pa, bq P U , we have αpaq � αpbq,
i.e. such that α|ra,bs is a loop (see Figure 2). We endow each loop-cancellation with
the linear ordering inherited from the ordering of r0, 1s. Let L pαq denote the set
of all loop-cancellations of α. We give L pαq the following partial order: V ¥ U
in L pαq if for each U P U , there exists V P V such that U � V . Clearly, the
empty set is minimal in L pαq. We say a loop-cancellation is maximal in L pαq if
it is maximal with respect to this partial order on L pαq. If α is itself a loop, then
tp0, 1qu is a maximal loop-cancellation of α.

To construct injective paths, we wish to “delete” loops occurring as subpaths of
α. Formally, this must be done within the domain by collapsing the closure of each
element of a loop-cancellation to a single point so that the resulting quotient space
is homeomorphic to r0, 1s. The next definition identifies when such an operation is
possible.

Definition. We say that a loop-cancellation U P L pαq is collapsible if U �
tp0, 1qu and if the elements of U have pairwise disjoint closures.
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Remark 2. If α is not a loop and U is maximal in L pαq, then U is necessarily
collapsible. Otherwise, we would have pa, bq, pb, cq P U , which implies αpaq �
αpbq � αpcq. We could then replace these two with pa, cq to form a loop-cancellation
that is greater in L pαq.

Let U be a collection of open intervals in p0, 1q with pairwise-disjoint closures.
Basic constructions from real analysis give the existence of non-decreasing, contin-
uous surjections ΓU : r0, 1s Ñ r0, 1s that are constant on the closure of each set
U P U and which are strictly increasing on r0, 1sz

�
tI | I P U u. We refer to such

a function ΓU as a collapsing function for U . For example, if U is the set of
components of the complement of the ternary Cantor set, then the ternary Cantor
function is a collapsing function for U . Note that ΓU is not unique to U but if
ΓU and Γ1

U are two collapsing functions for U , then we have h � ΓU � Γ1
U for

some increasing homeomorphism h : r0, 1s Ñ r0, 1s.

Definition. Suppose U P L pαq is collapsible and let ΓU be a collapsing function
for U . We write αU : r0, 1s Ñ X for the path, which agrees with α on r0, 1sz

�
U

and such that α|U is constant on each I P U , that is, αU pIq � αpBIq for each
I P U . By the universal property of the quotient map ΓU , there exists a unique
path β : r0, 1s Ñ X satisfying β � ΓU � αU , which we refer to as a U -reduction of
α.

Since any two collapsing functions for U differ by a homeomorphism, it follows
that if β and β1 are two U -reductions of α (constructed using different collapsing
functions), then β � β1.

Figure 2. A loop-cancellation U of a path α consisting of three
intervals each of which is mapped to a loop. In this case, the loop-
cancellation is maximal and a parameterization of the black arc is
a U -reduction of α.

Proposition 2. If U P L pαq is maximal and β is a U -reduction of α, then β is
injective.

Proof. We prove the contrapositive. Suppose 0 ¤ a   b ¤ 1, with βpaq � βpbq. Fix
collapsing function ΓU for U such that β �ΓU � αU . Since ΓU is non-decreasing,
Γ�1

U pra, bsq is a closed interval, call it rc, ds. Notice that for each I P U , either
I � pc, dq or I X rc, ds � H. Now c, d R

�
U and αU pcq � βpaq � βpbq � αU pdq.

Since α agrees with αU on r0, 1sz
�

U , we have αpcq � αpdq. Now V � tI P U |
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I X rc, ds � Hu Y tpc, dqu is a loop-cancellation for α that is greater than U in
L pαq. Hence, U is not maximal. �

It is not entirely obvious that a maximal loop-cancellation must exist for an
arbitrary path. Indeed, it is possible for distinct loop-cancellations to nest and
overlap in complicated ways. Compounding the issue is the fact that different
maximal loop-cancellations may result in different reductions. For example, suppose
β, γ : r0, 1s Ñ X are injective paths for which βpp0, 1qqXγpp0, 1qq � H, βp0q � γp0q,
and βp1q � γp1q. If α � pβ � β�q � γ, then U � tp0, 1{2qu is maximal in L pαq with
γ as a U -reduction and V � tp1{4, 1qu is maximal with β as a V -reduction. Based
on these observations, it is natural to attempt an application of Zorn’s Lemma.

Lemma 3. If X permits loop deletion then for every path α : r0, 1s Ñ X, there
exists a maximal loop-cancellation V P L pαq.

Proof. The conclusion is clear if α is a loop so we assume αp0q � αp1q. The lemma
will follow from Zorn’s Lemma once we show that every linearly ordered suborder
of L pαq has an upper bound. Suppose S � L pαq is linearly ordered when given
the order inherited from L pαq. Now V �

�
U PSp

�
U q is an open subset of p0, 1q.

Let V denote the set of connected components of V . To show that S has an upper
bound in L pαq, it suffices to show that V P L pαq. Let pc, dq P V . If pc, dq P U for
some U P S, it is clear that αpcq � αpdq. Suppose that pc, dq R U for any U P S.

Pick c   � � �   a3   a2   a1   b1   b2   b3   � � �   d where tanu Ñ c
and tbnu Ñ d. Fixing n P N,

�
S is an open cover of the closed interval ran, bns

and so we may find finitely many In,1, In,2, . . . , In,kn
P
�
S, which cover ran, bns.

Find Wn,j P S with In,j P Wn,j . Since S is linearly ordered, we may define Un

to be the maximum of tWn,1,Wn,2, . . . ,Wn,kn
u in S. Since In,j �

�
Wn,j �

�
Un

for all j, it follows that ran, bns �
�

Un. For some interval pcn, dnq P Un we
have ran, bns � pcn, dnq. Moreover, since pcn, dnq meets the connected connected
component pc, dq of V , we have pcn, dnq � pc, dq.

We now have c ¤ � � � ¤ c3 ¤ c2 ¤ c1   d1 ¤ d2 ¤ d3 ¤ � � � ¤ d where tcnu Ñ c
and tdnu Ñ d. Moreover, since pcn, dnq P Un P S, we have αpcnq � αpdnq for all
n P N. Finally, since we are assuming that X permits loop deletion, it follows that
αpcq � αpdq. Therefore, V is a loop cancellation, i.e. V P L pαq. �

Proof of Theorem 1. Suppose X is a path connected Hausdorff space and fix x, y P
X with x � y. Find a path α : r0, 1s Ñ X from x to y. According to Lemma 3,
there exists a maximal loop-cancellation V P L pαq. Since V must be collapsible
(Remark 2), we may choose a collapsing function ΓV for V . Now the V -reduction
β : r0, 1s Ñ X satisfying β � ΓV � αV is injective by Proposition 2. Since ΓV :
r0, 1s Ñ r0, 1s is a non-decreasing surjection, we have βp0q � x and βp1q � y.
Moreover, since r0, 1s is compact and X is Hausdorff, the continuous injection β is
a homeomorphism onto its image. This proves X is arcwise connected. �

2. What other spaces permit loop deletion?

There are, in fact, some commonly used spaces that permit loop deletion but
which are not necessarily Hausdorff. Such spaces become particularly relevant when
general constructions fail to be closed under the Hausdorff property.

Definition. We say a space X is
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(1) weakly Hausdorff if for every map f : K Ñ X from a compact Hausdorff
space K, the image fpKq is closed in X,

(2) ∆-Hausdorff if for every path α : r0, 1s Ñ X, the image αpr0, 1sq is closed
in X.

The following implications hold: Hausdorff ñ weakly Hausdorff ñ ∆-Hausdorff
ñ T1. The weakly Hausdorff property is particularly relevant to algebraic topology,
where it provides a suitable “separation axiom” within the category of compactly
generated spaces [12]. As noted in [9], if one is performing “gluing” constructions
involving quotient topologies in algebraic topology, the weakly Hausdorff property is
often preferable over the Hausdorff property since many such constructions preserve
the former property but not the latter. The ∆-Hausdorff property is the analogue in
the category of “∆-generated spaces” [4, 7] and offers the same kind of conveniences.

Example 4. The one-point compactification X� of any non-locally compact Haus-
dorff space X is weakly Hausdorff but not Hausdorff. This occurs, for example, if
X is Q, Rω with the product topology, or r0, 1sω in the uniform topology. One can
attach arcs or other spaces to X� to obtain path-connected examples. Hence, there
are many ∆-Hausdorff spaces that are not Hausdorff.

To extend Theorem 1, we check that all of the ingredients of the proof work for
∆-Hausdorff spaces.

Lemma 5. If X is ∆-Hausdorff, then X permits loop deletion.

Proof. Suppose, to obtain a contradiction, that αp0q � x � y � αp1q. Set xn �
αpanq � αpbnq and note that txnu converges to both x and y in X. If the sequences
tanu and tbnu stabilize to 0 and 1 respectively, then αpbnq � x for sufficiently large
n. Therefore, the constant sequence at x converges to y. Since every ∆-Hausdorff
space is T1, we obtain a contradiction.

We now assume that one of the sequences tanu or tbnu is not eventually constant.
Without loss of generality, we may assume tanu is not eventually constant. Thus
0   an for all n P N. Since X is ∆-Hausdorff, the sets αpr0, ansq, n P N are closed
in X and contain txm | m ¥ nu. Since txmum¥n Ñ y, we have y P αpr0, ansq. Since
tanu is non-increasing an converges to 0, we may find a decreasing sequence ttju
in p0, a1s that converges to 0 and for which αptjq � y for all j P N. However, since
ttju Ñ 0, it follows that the constant sequence at y converges to x. Thus X is T1
and x P tyu; a contradiction. �

Since we are no longer assuming X is Hausdorff, the usual Closed Mapping
Theorem (the continuous image of a compact space in a Hausdorff space is closed)
does not apply. Hence, we must also make sure that an injective path in a ∆-
Hausdorff space is an embedding.

Lemma 6. If X is ∆-Hausdorff, then every injective-path in X is a closed embed-
ding.

Proof. Let α : r0, 1s Ñ X be an injective-path and let C � r0, 1s be closed. Write
C �

�
nPN Fn where Fn is a finite, disjoint union of closed intervals. Since X is

∆-Hausdorff, if ra, bs is a component of Fn, then αpra, bsq is closed in X. Therefore,
αpFnq is closed in X for all n P N. Since α is injective, we have αpCq �

�
nPN αpFnq

and we conclude that αpCq is closed in X. �
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With Lemmas 5 and 6 established, the same proof used in Section 1 gives the
following generalization of Theorem 1.

Theorem 7. Every path-connected, ∆-Hausdorff topological space is arcwise con-
nected.

Upon inspection, one can see that all parts of Börger’s proof of Theorem 1 also
goes through for ∆-Hausdorff spaces. Hence, Theorem 7 can be proven without
appealing to the axiom of choice.

Example 8. Even with the weakened hypothesis, the converse of Theorem 7 is
certainly not true. For a counterexample, let X be the quotient space r�1, 1s{�
where � n

n�1 �
n

n�1 for n P N (this space is precisely illustrated in Figure 1). As
a quotient of a closed interval, X is ∆-generated. However, one can show that X
is not arcwise connected and therefore is not ∆-Hausdorff. Let a, b be the images
of �1, 1 in X respectively and let Y be the space obtained by attaching a copy of
r0, 1s to X by identifying 0 � a and 1 � b. Now Y is arcwise connected but it is
not ∆-Hausdorff.

Indeed, it is unrealistic to hope that there is some simple topological property P
that gives “path connected � P ô arcwise connected” and whose definition doesn’t
involving quantifying over all paths in the space. However, it is possible to show
that X is ∆-Hausdorff if and only if every non-loop path in X has an injective
U -reduction. Since we have already proven the “hard” direction in this note, we’ll
leave the converse as an exercise.
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[7] L. Fajstrup, J. Rosický, A convenient category for directed homotopy, Theory Appl. Categ.

21 (2008), no. 1, 7–20.
[8] D.W. Hall and G.L. Spencer, Elementary Topology, Wiley, 1955..

[9] M.C. McCord, Classifying Spaces and Infinite Symmetric Products, Trans. Amer. Math. Soc.
146 (1969) 273–298.

[10] R.L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Colloq. Publ., vol. 13, 1932.
Revised ed. 1962.

[11] S.B. Nadler Jr., Continuum theory, M. Dekker, New York, Basel and Hong Kong, 1992.
[12] N.P. Strickland, The category of CGWH spaces, Unpublished notes (2009). https://neil-

strickland.staff.shef.ac.uk/courses/homotopy/cgwh.pdf. Accessed 17 August 2021.
[13] S. Willard, General Topology, Addison-Wesley, 1968.

West Chester University, Department of Mathematics, West Chester, PA 19383,

USA
Email address: jbrazas@wcupa.edu


