Open subgroups of free topological groups

Jeremy Brazas

Spring Topology and Dynamics Conference, New Britain, CT

March 23, 2013

Jeremy Brazas Open subgroups of free topological groups

・ロ・ ・ 四・ ・ 回・ ・ 回・

Free topological groups

The **free Graev topological group** on a based space (X, e) is the topological group $F_G(X, e)$ equipped with a based map $\sigma : X \to F_G(X, e)$: Given $f : X \to G$, $f(e) = e_G$

 $\mathsf{TopGrp}(F_G(X, e), G) \cong \mathsf{Top}_*(X, U(G))$

The unbased version is the free Markov topological group $F_M(X)$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Free topological groups

The **free Graev topological group** on a based space (X, e) is the topological group $F_G(X, e)$ equipped with a based map $\sigma : X \to F_G(X, e)$: Given $f : X \to G$, $f(e) = e_G$

 $\mathbf{TopGrp}(F_G(X, e), G) \cong \mathbf{Top}_*(X, U(G))$

The unbased version is the free Markov topological group $F_M(X)$.

Free topological groups

The **free Graev topological group** on a based space (X, e) is the topological group $F_G(X, e)$ equipped with a based map $\sigma : X \to F_G(X, e)$: Given $f : X \to G$, $f(e) = e_G$

 $\mathbf{TopGrp}(F_G(X, e), G) \cong \mathbf{Top}_*(X, U(G))$

The unbased version is the free Markov topological group $F_M(X)$.

Free topological groups

The **free Graev topological group** on a based space (X, e) is the topological group $F_G(X, e)$ equipped with a based map $\sigma : X \to F_G(X, e)$: Given $f : X \to G$, $f(e) = e_G$

$\mathbf{TopGrp}(F_G(X, e), G) \cong \mathbf{Top}_*(X, U(G))$

The unbased version is the free Markov topological group $F_M(X)$.

Free topological groups

The **free Graev topological group** on a based space (X, e) is the topological group $F_G(X, e)$ equipped with a based map $\sigma : X \to F_G(X, e)$: Given $f : X \to G$, $f(e) = e_G$

$$\mathbf{TopGrp}(F_G(X, e), G) \cong \mathbf{Top}_*(X, U(G))$$

The unbased version is the **free Markov topological group** $F_M(X)$.

Free topological groups

Introduced by

Markov (1940s) $F_M(X)$ Graev (1960s) $F_G(X, e)$

★ E → ★ E →

크

< 17 ▶

Free topological groups

Introduced by

Markov (1940s) $F_M(X)$ Graev (1960s) $F_G(X, e)$

Free topological groups take the place of free groups in the general study of topological groups.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

2

Free topological groups

Introduced by

Markov (1940s) $F_M(X)$ Graev (1960s) $F_G(X, e)$

- Free topological groups take the place of free groups in the general study of topological groups.
- Typically, X is Tychonoff ($\sigma : X \subset F_G(X, e)$).

・ロット (母) ・ ヨ) ・ ・ ヨ)

Free topological groups

Introduced by

Markov (1940s) $F_M(X)$ Graev (1960s) $F_G(X, e)$

- Free topological groups take the place of free groups in the general study of topological groups.
- Typically, X is Tychonoff ($\sigma : X \subset F_G(X, e)$).
- As groups,

$$F_M(X) = F(X)$$

$$F_G(X, e) = F(X \setminus e) = F(X) / \langle e \rangle^{F(x)}$$

・ロト ・四ト ・ヨト ・ヨト

2

Topological Nielsen-Schreier?

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

▲□ → ▲ □ → ▲ □ →

Topological Nielsen-Schreier?

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

Question: Is every subgroup $H \leq F_G(X, e)$ a free Graev topological group?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Topological Nielsen-Schreier?

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

Question: Is every subgroup $H \le F_G(X, e)$ a free Graev topological group? No, not even if *H* is closed (Graev; Brown; Clarke; Hunt, Morris).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Topological Nielsen-Schreier?

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

Question: Is every subgroup $H \leq F_G(X, e)$ a free Graev topological group?

No, not even if H is closed (Graev; Brown; Clarke; Hunt, Morris).

Yes, if X is Hausdorff k_{ω} -space and H is **open** (R. Brown, J.P. Hardy; P. Nickolas).

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

-

Topological Nielsen-Schreier?

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

Question: Is every subgroup $H \leq F_G(X, e)$ a free Graev topological group?

No, not even if H is closed (Graev; Brown; Clarke; Hunt, Morris).

Yes, if X is Hausdorff k_{ω} -space and H is **open** (R. Brown, J.P. Hardy; P. Nickolas).

Yes, in abelian case $A_G(X, e)$, X Tychonoff and H open (Morris, Pestov).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Topological Nielsen-Schreier?

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

Question: Is every subgroup $H \leq F_G(X, e)$ a free Graev topological group?

No, not even if H is closed (Graev; Brown; Clarke; Hunt, Morris).

Yes, if X is Hausdorff k_{ω} -space and H is **open** (R. Brown, J.P. Hardy; P. Nickolas).

Yes, in abelian case $A_G(X, e)$, X Tychonoff and H open (Morris, Pestov).

Question: Is every open subgroup $H \le F_G(X, e)$ a free Graev topological group? (at least for Tychonoff *X*)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Theorem 1: Every open subgroup of a free Graev topological group is a free Graev topological group.

Theorem 2: Every open subgroup of a free Markov topological group is a free Markov topological group iff it is disconnected.

*No separation axioms are required.

Theorem 1: Every open subgroup of a free Graev topological group is a free Graev topological group.

Theorem 2: Every open subgroup of a free Markov topological group is a free Markov topological group iff it is disconnected.

*No separation axioms are required.

Putting algebraic topology to work

Algebraic topology: The *fundamental group* π_1 and *covering space theory* provide a straightforward proof of the Nielsen-Schreier Theorem.

Topology \longleftrightarrow Algebra

Extension: Use a topologically enriched version π_1^{τ} of the fundamental group and a generalization of covering spaces (semicovering spaces).

"Wild" Topology \longleftrightarrow Topological algebra

Putting algebraic topology to work

Algebraic topology: The *fundamental group* π_1 and *covering space theory* provide a straightforward proof of the Nielsen-Schreier Theorem.

Topology \longleftrightarrow Algebra

Extension: Use a topologically enriched version π_1^{τ} of the fundamental group and a generalization of covering spaces (semicovering spaces).

"Wild" Topology \longleftrightarrow Topological algebra

The Nielsen-Schreier Theorem

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

▲□ → ▲ □ → ▲ □ →

The Nielsen-Schreier Theorem

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

Lemma: The fundamental group of a graph is free.

< 一型

Completing the proof.

Proof.

Suppose
$$H \leq F(A) = \pi_1 \left(\bigvee_A S^1, x_0 \right)$$

There is a covering map $p: Y \to \bigvee_A S^1$ such that $p_*(\pi_1(Y, y_0)) = H$.

The covering of a graph is a graph, so Y is a graph.

Since Y is a graph, $H \cong \pi_1(Y, y_0)$ is free.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Completing the proof.

Proof.

Suppose $H \leq F(A) = \pi_1 (\bigvee_A S^1, x_0)$

There is a covering map $p: Y \to \bigvee_A S^1$ such that $p_*(\pi_1(Y, y_0)) = H$.

The covering of a graph is a graph, so Y is a graph.

Since Y is a graph, $H \cong \pi_1(Y, y_0)$ is free.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Completing the proof.

Proof.

Suppose
$$H \leq F(A) = \pi_1 (\bigvee_A S^1, x_0)$$

There is a covering map $p: Y \to \bigvee_A S^1$ such that $p_*(\pi_1(Y, y_0)) = H$.

The covering of a graph is a graph, so Y is a graph.

Since Y is a graph, $H \cong \pi_1(Y, y_0)$ is free.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Completing the proof.

Proof.

Suppose
$$H \leq F(A) = \pi_1 \left(\bigvee_A S^1, x_0 \right)$$

There is a covering map $p : Y \to \bigvee_A S^1$ such that $p_*(\pi_1(Y, y_0)) = H$.

The covering of a graph is a graph, so Y is a graph. Since Y is a graph, $H \approx \pi_1(Y, v_0)$ is free

<ロ> <同> <同> < 同> < 同> < 同> < □> <

Completing the proof.

Proof.

Suppose
$$H \leq F(A) = \pi_1 (\bigvee_A S^1, x_0)$$

There is a covering map $p : Y \to \bigvee_A S^1$ such that $p_*(\pi_1(Y, y_0)) = H$.

The covering of a graph is a graph, so *Y* is a graph.

Since Y is a graph, $H \cong \pi_1(Y, y_0)$ is free.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

Completing the proof.

Proof.

Suppose
$$H \leq F(A) = \pi_1 (\bigvee_A S^1, x_0)$$

There is a covering map $p : Y \to \bigvee_A S^1$ such that $p_*(\pi_1(Y, y_0)) = H$.

The covering of a graph is a graph, so *Y* is a graph.

Since Y is a graph, $H \cong \pi_1(Y, y_0)$ is free.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Jeremy Brazas Open subgroups of free topological groups

< 🗗 ►

★ E > ★ E >

æ

Topologizing π_1

Guiding principle: If $\alpha_n \to \alpha$ in $\Omega(X, x)$, then $[\alpha_n] \to [\alpha]$ in $\pi_1(X, x)$.

<ロ> <同> <同> < 同> < 同> < 同> 、

æ

Topologizing π_1

Guiding principle: If $\alpha_n \to \alpha$ in $\Omega(X, x)$, then $[\alpha_n] \to [\alpha]$ in $\pi_1(X, x)$.

 $\Omega(X, x) \to \pi_1(X, x), \alpha \mapsto [\alpha]$ should be continuous.

The quasitopological fundamental group

Natural choice: Give $\pi_1(X, x)$ the quotient topology with respect to $\Omega(X, x) \rightarrow \pi_1(X, x)$ (Biss).

- $\pi_1^{qtop}(X, x)$ is a quasitopological group (Calcut, McCarthy).
- $\star \pi_1^{qtop}(X, x)$ can fail to be a topological group even for Peano continua (P. Fabel).
- The topology of π^{atop}₁(X, x) is often complicated but can retain more local data than shape invariants.

A left adjoint τ : **qTopGrp** \rightarrow **TopGrp** removes the "fewest number" of open sets from quasitopological *G* until a topological $\tau(G)$ is obtained.

Let
$$\pi_1^{\tau}(X, x) = \tau(\pi_1^{qtop}(X, x))$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

3

The quasitopological fundamental group

Natural choice: Give $\pi_1(X, x)$ the quotient topology with respect to $\Omega(X, x) \rightarrow \pi_1(X, x)$ (Biss).

- $\pi_1^{qtop}(X, x)$ is a quasitopological group (Calcut, McCarthy).
- $harpin \pi_1^{qtop}(X, x)$ can fail to be a topological group even for Peano continua (P. Fabel).
- The topology of π^{qtop}₁(X, x) is often complicated but can retain more local data than shape invariants.

A left adjoint τ : **qTopGrp** \rightarrow **TopGrp** removes the "fewest number" of open sets from quasitopological *G* until a topological $\tau(G)$ is obtained.

Let
$$\pi_1^{\tau}(X, x) = \tau(\pi_1^{qtop}(X, x))$$

・ロト ・四ト ・ヨト ・ヨト

The quasitopological fundamental group

Natural choice: Give $\pi_1(X, x)$ the quotient topology with respect to $\Omega(X, x) \rightarrow \pi_1(X, x)$ (Biss).

- $\pi_1^{qtop}(X, x)$ is a quasitopological group (Calcut, McCarthy).
- $\pi_1^{qtop}(X, x)$ can fail to be a topological group even for Peano continua (P. Fabel).

The topology of $\pi_1^{qtop}(X, x)$ is often complicated but can retain more local data than shape invariants.

A left adjoint τ : **qTopGrp** \rightarrow **TopGrp** removes the "fewest number" of open sets from quasitopological *G* until a topological $\tau(G)$ is obtained.

Let
$$\pi_1^{\tau}(X, x) = \tau(\pi_1^{qtop}(X, x))$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The quasitopological fundamental group

Natural choice: Give $\pi_1(X, x)$ the quotient topology with respect to $\Omega(X, x) \rightarrow \pi_1(X, x)$ (Biss).

- $\pi_1^{qtop}(X, x)$ is a quasitopological group (Calcut, McCarthy).
- $\pi_1^{qtop}(X, x)$ can fail to be a topological group even for Peano continua (P. Fabel).
- The topology of π^{qtop}₁(X, x) is often complicated but can retain more local data than shape invariants.

A left adjoint τ : **qTopGrp** \rightarrow **TopGrp** removes the "fewest number" of open sets from quasitopological *G* until a topological $\tau(G)$ is obtained.

Let
$$\pi_1^{\tau}(X, x) = \tau(\pi_1^{qtop}(X, x))$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The quasitopological fundamental group

Natural choice: Give $\pi_1(X, x)$ the quotient topology with respect to $\Omega(X, x) \rightarrow \pi_1(X, x)$ (Biss).

- $\pi_1^{qtop}(X, x)$ is a quasitopological group (Calcut, McCarthy).
- $\pi_1^{qtop}(X, x)$ can fail to be a topological group even for Peano continua (P. Fabel).
- The topology of $\pi_1^{qtop}(X, x)$ is often complicated but can retain more local data than shape invariants.

A left adjoint τ : **qTopGrp** \rightarrow **TopGrp** removes the "fewest number" of open sets from quasitopological *G* until a topological $\tau(G)$ is obtained.

Let
$$\pi_1^{\tau}(X, x) = \tau(\pi_1^{qtop}(X, x))$$

Characterizations:

▶ The topology of $\pi_1^{\tau}(X, x)$ is the finest *group* topology on $\pi_1(X, x)$ such that $\Omega(X, x) \rightarrow \pi_1(X, x)$ is continuous.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Characterizations:

- ▶ The topology of $\pi_1^{\tau}(X, x)$ is the finest *group* topology on $\pi_1(X, x)$ such that $\Omega(X, x) \to \pi_1(X, x)$ is continuous.
- Transfinite approximation by quasitopological groups

< 日 > < 回 > < 回 > < 回 > < 回 > <

Characterizations:

- ► The topology of $\pi_1^{\tau}(X, x)$ is the finest *group* topology on $\pi_1(X, x)$ such that $\Omega(X, x) \to \pi_1(X, x)$ is continuous.
- Transfinite approximation by quasitopological groups

Utility: realizing universal topological groups

- $\pi_1^{\tau}(\Sigma(Z_+)) \cong F_M(\pi_0^{qtop}(Z))$ where $\Sigma(Z_+) = Z \times I/Z \times \{0, 1\}$ is a generalized wedge of circles.
- Topological van-Kampen theorems

Semicovering maps

Definition: A map $p : Y \rightarrow X$ is a semicovering map if

- p is a local homeomorphism
- Whenever f is a path or homotopy of paths starting at p(y₀) = x₀, there is a unique lift f starting at y₀
- Each lifting function $f \mapsto \overline{f}$ is continuous on mapping spaces.

Every covering map is a semicovering map but not every semicovering is a covering map.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Semicovering maps

Definition: A map $p : Y \rightarrow X$ is a semicovering map if

- p is a local homeomorphism
- Whenever f is a path or homotopy of paths starting at p(y₀) = x₀, there is a unique lift f starting at y₀
- Each lifting function $f \mapsto \overline{f}$ is continuous on mapping spaces.

Every covering map is a semicovering map but not every semicovering is a covering map.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Semicovering maps

Definition: A map $p : Y \rightarrow X$ is a semicovering map if

p is a local homeomorphism

- Whenever *f* is a path or homotopy of paths starting at *p*(*y*₀) = *x*₀, there is a *unique* lift *f* starting at *y*₀
- Each lifting function $f \mapsto \tilde{f}$ is continuous on mapping spaces.

Every covering map is a semicovering map but not every semicovering is a covering map.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Semicovering maps

Definition: A map $p : Y \rightarrow X$ is a semicovering map if

- p is a local homeomorphism
- Whenever *f* is a path or homotopy of paths starting at *p*(*y*₀) = *x*₀, there is a *unique* lift *f* starting at *y*₀
- Each lifting function $f \mapsto \overline{f}$ is continuous on mapping spaces.

Every covering map is a semicovering map but not every semicovering is a covering map.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Semicovering maps

Definition: A map $p : Y \rightarrow X$ is a semicovering map if

- p is a local homeomorphism
- Whenever f is a path or homotopy of paths starting at p(y₀) = x₀, there is a unique lift f starting at y₀
- Each lifting function $f \mapsto \tilde{f}$ is continuous on mapping spaces.

Every covering map is a semicovering map but not every semicovering is a covering map.

・ロト ・四ト ・ヨト ・ヨト

Semicovering maps

Definition: A map $p : Y \rightarrow X$ is a semicovering map if

- p is a local homeomorphism
- Whenever f is a path or homotopy of paths starting at p(y₀) = x₀, there is a unique lift f starting at y₀
- Each lifting function $f \mapsto \tilde{f}$ is continuous on mapping spaces.

Every covering map is a semicovering map but not every semicovering is a covering map.

A semicovering which is not a covering

Jeremy Brazas Open subgroups of free topological groups

문에 비용어

Traditional Covering Theory

A covering map $p : Y \to X$ induces an injection $p_* : \pi_1(Y, y_0) \to \pi_1(X, x_0)$ of groups. Let $H = p_*(\pi_1(Y, y_0))$.

Classification of covering maps: If X is locally "nice" (locally path connected, and semilocally simply connected), then there is a bijective correspondence

$$\left\{ \begin{array}{c} \mathsf{Equivalence \ classes \ of} \\ \mathsf{coverings} \ p : \mathsf{Y} \to \mathsf{X} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \mathsf{Conjugacy \ classes \ of} \\ \mathsf{subgroups} \ H \leq \pi_1(\mathsf{X}, \mathsf{x}) \end{array} \right\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semicovering Space Theory

A semicovering map $p: Y \to X$ induces an **open embedding** $p_*: \pi_1^{\tau}(Y, y_0) \to \pi_1^{\tau}(X, x_0)$ of topological groups. Let $H = p_*(\pi_1^{\tau}(Y, y_0))$.

Classification of semicovering maps: If *X* is locally wep-connected, then there is a bijective correspondence

$$\left\{ \begin{array}{c} \text{Equivalence classes of} \\ \text{semicoverings } p: Y \to X \end{array} \right\} \longleftrightarrow \quad \left\{ \begin{array}{c} \text{Conjugacy classes of} \\ \text{open subgroups } H \leq \pi_1^{\tau}(X, x) \end{array} \right\}$$

・ロット (母) ・ ヨ) ・ コ)

Top-graphs

Replacement of graphs: A **Top**-graph Γ consists of a discrete space of vertices and an edge space $\Gamma(x, y)$ for each ordered pair of vertices (x, y).

Lemma: If Γ is a **Top**-graph, then $\pi^{\tau}_{+}(\Gamma, x)$ is a free Graev topological group.

Proof. Use universal constructions of topologically enriched categories and groupoids

(i.e. **Top**-categories and **Top**-groupoids)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Top-graphs

Replacement of graphs: A **Top**-graph Γ consists of a discrete space of vertices and an edge space $\Gamma(x, y)$ for each ordered pair of vertices (x, y).

Lemma: If Γ is a **Top**-graph, then $\pi_1^{\tau}(\Gamma, x)$ is a free Graev topological group.

 Proof. Use universal constructions of topologically enriched categories and groupoids

 (i.e. Top-categories and Top-groupoids).

Top-graphs

Replacement of graphs: A **Top**-graph Γ consists of a discrete space of vertices and an edge space $\Gamma(x, y)$ for each ordered pair of vertices (x, y).

Lemma: If Γ is a **Top**-graph, then $\pi_1^{\tau}(\Gamma, x)$ is a free Graev topological group.

Proof. Use universal constructions of topologically enriched categories and groupoids (i.e. **Top**-categories and **Top**-groupoids).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Proof sketch

Suppose $H \leq F_G(X, e)$ is open.

Find Z such that $\pi_0^{qtop}(Z) \cong X$ (D. Harris)

The unreduced suspension $\Gamma = SZ$ is a **Top**-graph such that $\pi_1^{\tau}(\Gamma, x) = F_G(X, e)$.

There is a semicovering $p : Y \to \Gamma$ such that $p_*(\pi_1^{\tau}(Y, y)) = H$.

A semicovering of a **Top**-graph is a **Top**-graph, so Y is a **Top**-graph.

Since Y is a **Top**-graph, $p_* : \pi_1^{\tau}(Y, y) \cong H$ is free Graev topological.

(日)

Proof sketch

Suppose $H \leq F_G(X, e)$ is open.

Find Z such that $\pi_0^{qtop}(Z) \cong X$ (D. Harris)

The unreduced suspension $\Gamma = SZ$ is a **Top**-graph such that $\pi_1^{\tau}(\Gamma, x) = F_G(X, e)$.

There is a semicovering $p : Y \to \Gamma$ such that $p_*(\pi_1^\tau(Y, y)) = H$.

A semicovering of a **Top**-graph is a **Top**-graph, so Y is a **Top**-graph.

Since Y is a **Top**-graph, $p_* : \pi_1^{\tau}(Y, y) \cong H$ is free Graev topological.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

3

Proof sketch

Suppose $H \leq F_G(X, e)$ is open.

Find Z such that $\pi_0^{qtop}(Z) \cong X$ (D. Harris)

The unreduced suspension $\Gamma = SZ$ is a **Top**-graph such that $\pi_1^{\tau}(\Gamma, x) = F_G(X, e)$.

There is a semicovering $p : Y \to \Gamma$ such that $p_*(\pi_1^{\tau}(Y, y)) = H$.

A semicovering of a **Top**-graph is a **Top**-graph, so Y is a **Top**-graph.

Since Y is a **Top**-graph, $p_* : \pi_1^{\tau}(Y, y) \cong H$ is free Graev topological.

Proof sketch

Suppose $H \leq F_G(X, e)$ is open.

Find Z such that $\pi_0^{qtop}(Z) \cong X$ (D. Harris)

The unreduced suspension $\Gamma = SZ$ is a **Top**-graph such that $\pi_1^{\tau}(\Gamma, x) = F_G(X, e)$.

There is a semicovering $p: Y \to \Gamma$ such that $p_*(\pi_1^\tau(Y, y)) = H$.

A semicovering of a **Top**-graph is a **Top**-graph, so Y is a **Top**-graph. Since Y is a **Top**-graph, $p_* : \pi_1^{\tau}(Y, y) \cong H$ is free Graev topological.

Proof sketch

Suppose $H \leq F_G(X, e)$ is open.

Find Z such that $\pi_0^{qtop}(Z) \cong X$ (D. Harris)

The unreduced suspension $\Gamma = SZ$ is a **Top**-graph such that $\pi_1^{\tau}(\Gamma, x) = F_G(X, e)$.

There is a semicovering $p: Y \to \Gamma$ such that $p_*(\pi_1^\tau(Y, y)) = H$.

A semicovering of a **Top**-graph is a **Top**-graph, so Y is a **Top**-graph.

Since Y is a **Top**-graph, $p_* : \pi^{\tau}_{+}(Y, y) \cong H$ is free Graev topological.

Proof sketch

Suppose $H \leq F_G(X, e)$ is open.

Find Z such that $\pi_0^{qtop}(Z) \cong X$ (D. Harris)

The unreduced suspension $\Gamma = SZ$ is a **Top**-graph such that $\pi_1^{\tau}(\Gamma, x) = F_G(X, e)$.

There is a semicovering $p: Y \to \Gamma$ such that $p_*(\pi_1^{\tau}(Y, y)) = H$.

A semicovering of a **Top**-graph is a **Top**-graph, so Y is a **Top**-graph.

Since Y is a **Top**-graph, $p_* : \pi_1^{\tau}(Y, y) \cong H$ is free Graev topological.

References

- J. Brazas, Semicoverings: A generalization of covering space theory. Homology Homotopy Appl. 14 (2012) 33-63.
- J. Brazas, The fundamental group as topological group. Topology Appl. 160 (2013) 170-188.
- J. Brazas, Open subgroups of free topological groups. Submitted. 2013. arXiv:1209.5486.
- R. Brown, J.P.L. Hardy, Subgroups of free topological groups and free topological products of topological groups, J. London Math. Soc. (2) 10 (1975) 431-440.
 - P. Fabel, Multiplication is discontinuous in the Hawaiian earring group. Bull. Polish Acad. Sci. Math. 59 (2011) 7783.

Graev, M.I. Free topological groups. Amer. Math. Soc. Transl. 8 (1962) 305-365.

Markov, A.A. On free topological groups. Izv. Akad. Nauk. SSSR Ser. Mat. 9 (1945) 3-64.

S.A. Morris, V.G. Pestov, Open subgroups of free abelian topological groups. Math. Proc. Camb. Phil. Soc. 114 (1993) 439-442.

P. Nickolas, A Schreier theorem for free topological groups, Bulletin of the Australian Math. Soc. 13 (1975) 121–127.

(1日) (1日) (1日)

э