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Free topological groups

The free Graev topological group on a based space (X ,e) is the
topological group FG(X ,e) equipped with a based map σ : X → FG(X ,e):
Given f : X → G, f(e) = eG

X σ //

f
##

FG(X ,e)

∃!̃f
��

G

TopGrp(FG(X ,e),G) � Top∗(X ,U(G))

The unbased version is the free Markov topological group FM(X).
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Free topological groups

I Introduced by

Markov (1940s) FM(X)
Graev (1960s) FG(X ,e)

I Free topological groups take the place of free groups in the
general study of topological groups.

I Typically, X is Tychonoff (σ : X ⊂ FG(X ,e)).

I As groups,

FM(X) = F(X)
FG(X ,e) = F(X\e) = F(X)/〈e〉F(x)
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Topological Nielsen-Schreier?

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

Question: Is every subgroup H ≤ FG(X ,e) a free Graev topological group?

No, not even if H is closed (Graev; Brown; Clarke; Hunt, Morris).

Yes, if X is Hausdorff kω-space and H is open (R. Brown, J.P. Hardy; P.
Nickolas).

Yes, in abelian case AG(X ,e), X Tychonoff and H open (Morris,
Pestov).

Question: Is every open subgroup H ≤ FG(X ,e) a free Graev topological
group? (at least for Tychonoff X )
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Main Results

Theorem 1: Every open subgroup of a free Graev topological group is
a free Graev topological group.

Theorem 2: Every open subgroup of a free Markov topological group is
a free Markov topological group iff it is disconnected.

*No separation axioms are required.
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Putting algebraic topology to work

Algebraic topology: The fundamental group π1 and covering space theory
provide a straightforward proof of the Nielsen-Schreier Theorem.

Topology oo // Algebra

Extension: Use a topologically enriched version πτ1 of the fundamental group
and a generalization of covering spaces (semicovering spaces).

“Wild” Topology oo // Topological algebra
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The Nielsen-Schreier Theorem

Nielsen-Schreier Theorem: Every subgroup of a free group is free.

Lemma: The fundamental group of a graph is free.

'
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Completing the proof.

Proof.

Suppose H ≤ F(A)= π1

(∨
A S1, x0

)
There is a covering map p : Y →

∨
A S1 such that

p∗(π1(Y , y0)) = H.

The covering of a graph is a graph, so Y is a graph.

Since Y is a graph, H � π1(Y , y0) is free.
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Topologizing π1

Guiding principle: If αn → α in Ω(X , x), then [αn]→ [α] in π1(X , x).

Ω(X , x)→ π1(X , x), α 7→ [α] should be continuous.
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The quasitopological fundamental group

Natural choice: Give π1(X , x) the quotient topology with respect to
Ω(X , x)→ π1(X , x) (Biss).

I πqtop
1 (X , x) is a quasitopological group (Calcut, McCarthy).

I πqtop
1 (X , x) can fail to be a topological group even for Peano continua (P. Fabel).

I The topology of πqtop
1 (X , x) is often complicated but can retain more local data

than shape invariants.

A left adjoint τ : qTopGrp→ TopGrp removes the “fewest number” of open sets from
quasitopological G until a topological τ(G) is obtained.

Let πτ1(X , x) = τ(πqtop
1 (X , x))
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Topological π1

Characterizations:
I The topology of πτ1(X , x) is the finest group topology on π1(X , x) such

that Ω(X , x)→ π1(X , x) is continuous.

I Transfinite approximation by quasitopological groups

Utility: realizing universal topological groups
I πτ1(Σ(Z+)) � FM(πqtop

0 (Z)) where Σ(Z+) = Z × I/Z × {0,1} is a
generalized wedge of circles.

I Topological van-Kampen theorems
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Semicovering maps

Definition: A map p : Y → X is a semicovering map if
I p is a local homeomorphism
I Whenever f is a path or homotopy of paths starting at p(y0) = x0, there

is a unique lift f̃ starting at y0

I Each lifting function f 7→ f̃ is continuous on mapping spaces.

Every covering map is a semicovering map but not every semicovering is a
covering map.
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A semicovering which is not a covering
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Traditional Covering Theory

A covering map p : Y → X induces an injection p∗ : π1(Y , y0)→ π1(X , x0) of
groups. Let H = p∗(π1(Y , y0)).

Classification of covering maps: If X is locally “nice” (locally path
connected, and semilocally simply connected), then there is a bijective
correspondence{

Equivalence classes of
coverings p : Y → X

}
oo //

{
Conjugacy classes of

subgroups H ≤ π1(X , x)

}
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Semicovering Space Theory

A semicovering map p : Y → X induces an open embedding
p∗ : πτ1(Y , y0)→ πτ1(X , x0) of topological groups. Let H = p∗(πτ1(Y , y0)).

Classification of semicovering maps: If X is locally wep-connected, then
there is a bijective correspondence{

Equivalence classes of
semicoverings p : Y → X

}
oo //

{
Conjugacy classes of

open subgroups H ≤ πτ1(X , x)

}
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Top-graphs
Replacement of graphs: A Top-graph Γ consists of a discrete space of vertices and an
edge space Γ(x , y) for each ordered pair of vertices (x , y).

Lemma: If Γ is a Top-graph, then πτ1(Γ, x) is a free Graev topological group.

Proof. Use universal constructions of topologically enriched categories and groupoids

(i.e. Top-categories and Top-groupoids).
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Proof sketch

Suppose H ≤ FG(X ,e) is open.

Find Z such that πqtop
0 (Z) � X (D. Harris)

The unreduced suspension Γ = SZ is a Top-graph such that
πτ1(Γ, x) = FG(X ,e).

There is a semicovering p : Y → Γ such that p∗(πτ1(Y , y)) = H.

A semicovering of a Top-graph is a Top-graph, so Y is a Top-graph.

Since Y is a Top-graph, p∗ : πτ1(Y , y) � H is free Graev topological.
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