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Abstract

In this paper, we study the homotopy groups of a shrinking wedge
X of a sequence {X;} of non-simply connected CW-complexes. Using a
combination of generalized covering space theory and shape theory, we
construct a canonical homomorphism

6:7rn(X)—>H @ T (X;),

JeEN T (X)/m1(X ;)

characterize its image, and prove that © is injective whenever each uni-
versal cover X; is (n — 1)-connected. These results (1) provide a charac-
terization of the n-th homotopy group of the shrinking wedge of copies
of RP", (2) provide a characterization of w2 of an arbitrary shrinking
wedge, and (3) imply that a shrinking wedge of aspherical CW-complexes
is aspherical.
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1 Introduction

The shrinking wedge of a sequence X, X5, X3,... of based spaces, which we
will denote as YjeN X, is the usual one-point union \/jeN X; but equipped with
a topology coarser than the weak topology. In particular, every neighborhood
of the wedgepoint xy contains X; for all but finitely many j € N. For example,
E, = YjeN S™ is the m-dimensional earring space, which embeds in R™*1.
While fundamental groups of shrinking wedges of connected CW-complexes are
well-understood [13, 4], general methods for characterizing higher homotopy
groups remain elusive. It remains an open problem to establish an “infinite
Hilton-Milnor Theorem” that would provide a characterization of 7, (E,,), n >
m.

In 1962, Barratt and Milnor proved that the rational homology groups of Ey
are non-trivial (and even uncountable) in arbitrarily high dimension [1]. Com-
pare this with the fact that the reduced homology groups (with any coefficients)
of \/ jeN 52 are only non-trivial in dimension 2. The apparently “anomalous”
behavior of Es is due to the effect of natural, non-trivial, infinitary operations in
the higher homotopy groups 7, (E2), n > 2 and the fact that standard homology
groups are only “finitely commutative.”

When local structures in a space allow one to form geometrically represented
infinite products in homotopy groups, standard methods in homotopy theory
fail to apply. Thus other methods, e.g. shape theory [14], generalizations of
covering space theory [2, 7], and infinite word theory [4] are often required.
Since infinite products in 7, are formed “at a point,” shrinking wedges present
an important case that informs more general scenarios.

In the past two decades some progress has been made toward an under-
standing of the higher homotopy groups of shrinking wedges. In [5], Eda and
Kawamura show that E,, is (m — 1)-connected and m,,(E,,) = ZY. In [10] it is
shown that 7, (E,,) splits as m,,1((S™)Y, E,,) ® 7, (S™)N for n > m. However,
new methods will be need to characterize the elements of m,1((S™)Y,E,,).
Some ad-hoc approaches have also appeared, e.g. to show the second homotopy
group of the shrinking wedge of tori (see Figure 2) is trivial [6]. More recently,



the results of Eda-Kawamura were extended in [3] to other kinds of attachment
spaces constructed by attaching a shrinking sequence of spaces to a fixed one-
dimensional “core” space, e.g. attaching a shrinking sequence of spheres to an
arc, dendrite, Sierpinski carpet, etc. In this paper, we continue the effort to
better understand the higher homotopy groups of shrinking wedges. Using a
combination of shape theory and generalized covering space theory and the re-
sults of [3], we establish methods that characterize the effect of the fundamental
group m1 (Y ;e Xj) on mn (Y ey Xj), n = 2.

To provide more context for the statement of our main result, we briefly
recall a standard argument for the usual one-point union. If X =\/ jen X; is
a wedge of non-simply connected CW-complexes, the universal covering space
X, consists of copies of X (indexed by the coset space mi(X)/mi(X;)) that
are attached to each other in a tree-like fashion that matches the reduced—word
structure of the free product 71 (X) = #jenym1 (X;). If T is a maximal tree in the

1-skeleton of X, then )Z'/T is homotopy equivalent to \/ .y \/7rl X))/ () )N(j.

Since m,(X) = m,(X), we have a surjective homomorphism © : 7,(X) —
D jen P, (3x)/m (x x,) ™n(X;), which can be defined independent of the choice

of T. Moreover, when each covering space )~(j is (n — 1)-connected, © is an
isomorphism. In the case that some X ; are not (n—1) connected, other methods
for computing homotopy groups of wedges may become relevant; however, the
indexing of the wedge summand fully incorporates the effect of 7 on m,.

There are a few places where standard methods break down for a shrinking
wedge X =Y jeN X of connected, non-simply connected CW-complexes. First
and foremost, X does not have a universal covering space. However, it does
have a generalized universal covering space X (and map p : X > X ) in the
sense of Fischer and Zastrow [7]. The structure of X is an “infinite version” of
the classical situation. In particular, X also consists of copies of the universal
covering spaces X arranged in a tree-like fashion (in the sense that simple closed
curves only exist in individual copies of X ;). However, these arrangements will
now mimic the reduced infinite-word description of 71 (X) [4]. For example, an
infinite product £1£203 - - - € 71 (X) where {; € m; (X ) will lift to a path in X that
proceeds (in order) through coples of Xl, XQ,Xg, . in X. Thus, when j — o0,
one should consider copies of X in X as being shrinking in size. Since infinite
words in 71 (X) may be 1ndexed by countable, dense linear orders, there will be
corresponding dense arrangements of the spaces X ; within X too. With this
description of X , it is possible to choose a uniquely arcwise connected subspace
T < X that is analogous to a maximal tree. However, the collapsing map
X — X/T will rarely be a homotopy equivalence. Moreover, care is required
if one wishes to choose T' to be coherent with a choice of trees in the universal
covers over the approximating finite wedge \/?:1 X}. Finally, while X is “wild”
at only a single point, X will be wild at uncountably many points, namely those
in the wedgepoint fiber p~!(zg).

To overcome the many obstacles laid out in the previous paragraph, we first



attach an arc to each space X; to form Y; and take the endpoint of the added
“whisker” to be the basepoint of Y;. The universal cover 57 consists of X ; with
arcs attached to each point in the basepomt fiber of the covering map X - X;.
Now the generalized universal covering Y is comprlsed of copies of Y arranged
in the same way coples of X are arranged in X. However, the added arcs will
provide “extra space’ around which we can perform desired deformations. Most
of the technical work in this paper goes toward understanding both the direct
construction of Y (Definition 2.8) and its relationship to the inverse limit of
ordinary universal covering spaces. A key insight is that we must coherently
choose a maximal tree in each copy of X appearing within Y. We also use this
relationship to prove that the map collapsmg each of these (uncountably many)
trees to a point is a homotopy equivalence. The resulting quotient Z consists
of a uniquely arcwise-connected space with copies of a homotopy equivalent
quotient of X; attached along points. This puts us precisely in a situation to
apply the main result of [3]. The main result of the current paper is the following
theorem.

Theorem 1.1. Letn =2 and X = Y]eNX be a shrinking wedge of connected
CW-complexes X;. Then there is a canonical homomorphism

O : m(X) —>H @ T (X;),

jeN T (X)/m1(X;)
which is injective if each X; has an (n — 1)-connected universal covering space.

The injectivity of © in Theorem 1.1 is the isomorphism from [5] if each X is
simply connected and thus (n — 1)-connected. In the arbitrary case, we are still
able to characterize the image of © in terms of a natural topology on 1 (X) (see
Remark 6.6, which follows from Theorem 6.3). We remark on some immediate
applications and cases of interest.

Example 1.2. Consider the shrinking wedge X =Y . RP" of copies of real
projective n-space. The universal cover S™ of RP" is (n — 1)-connected and so
7, (X) embeds as a subgroup of

[] & mwey=]] & z=][Pz

JEN 1 (X) /1 (RP™) jeN w1 (X)/m1 (RP™) JeN ¢

It is possible construct the generalized universal covering space X similar to how
one might describe the universal cover of \/;?=1 RP" as a tree-like arrangement
of n-spheres. Explicitly, we could start with the generalized universal covering
space E; of the 1-dimensional earring space E;, which is a topological R-tree
and acts as a generalized Caley graph [8]. Every lift of a loop parameterizing the
j-th circle of E; parameterizes an “edge” in I~E1. Replacing each of these edges
with a copy of S™ (replacing endpoints with a choice of antipodal points) and
topologizing in a suitable fashion yields X (see Figure 1). This is an instructive
case to consider when reading the remainder of the paper as we understand



(Y jeN RP™) by using inverse limits to characterize and deform the structure
of X.

Figure 1: The generalized universal cover X of YjeN RP? seems impossible
to visualize as a whole but it will contain homeomorphic copies of the space
illustrated here, namely, an arc where the closure of each component of the
complement of the ternary Cantor set in that arc has been replaced by a 2-sphere
and such that the diameters of the spheres approach 0. X will also contain
arrangements of 2-spheres indexed by every other countable linear order type.
Each point in the Cantor set shown here, will be a “branch point” of uncountable
valence; every possible linear arrangement of spheres being attached at every
branch point multiple times.

Theorem 1.1 also provides a characterization of g for an arbitrary shrinking
wedge since the universal covering spaces X; are always 1-connected.

Corollary 1.3. If X = YjeN X is a shrinking wedge of connected CW-complexes,

then there is a canonical injective homomorphism

O : m(X) —>H @ T2 (X))

jeN w1 (X)/m1(X;)

There are many algebraic statements, which are immediate consequences of
embedding statements like Theorem 1.1 and Corollary 1.3, e.g. '/TQ(YJEN X;)
is torsion-free if and only if mo(X;) is torsion-free for all j € N. Recall that a
path-connected space Y is aspherical if 7,(Y) = 0 for all n > 2. Theorem 1.1
also implies the first part of the following theorem; the second part must be
proved separately (see Section 6.4).

Theorem 1.4. If X; is an aspherical CW-complex for all j € N, then YjeN X;
is aspherical. Moreover, if each X is locally finite, then the generalized universal

covering space X is contractible.



Example 1.5. Corollary 1.3 implies that the shrinking wedge of tori Y ..y T
(see Figure 2) is aspherical. Previously, it was only known that m2 (Y ;o ']I‘g =0
[6]. Similarly, a shrinking wedge of any sequence of orientable surfaces with
positive (or infinite) genus is aspherical.

Figure 2: The shrinking wedge of tori is aspherical and has a contractible gen-
eralized universal covering space.

2 Preliminaries and Notation

All topological spaces in this paper are assumed to be Hausdorff. Throughout,
I denotes the unit interval [0,1] and a path is a map « : I — X. We write « - 8
for the concatenation of paths when «(1) = 8(0) and a~ for the reverse path
a=(t) =a(l —t). If [a,b] € I and o : I — X is a path, we may simply write
[|fa,p7] to denote the path-homotopy class [a[q,5) © k] where A : [0,1] — [a, b]
is the unique increasing linear homeomorphism.

We will generally represent elements of the n-th homotopy group 7, (X, x),
n = 1 by relative maps (I, 0I™) — (X, z). When the basepoint z is clear from
context, we will suppress it from our notation and simply write m,(X).

We say that a homotopy H : X x I — Y is constant on A € X (or is
relative to A) if for all x € A, H(x,t) is constant as t varies. If H is constant
on the basepoint xg, then we call H a based homotopy. A based homotopy
equivalence is based map f : (X,z) — (Y,y) where there is a based homotopy
inverse g : (Y,y) — (X, z) and based homotopies idx ~ go f and idy ~ fog.

A Peano continuum is a connected locally path-connected compact metric
space. The Hahn-Mazurkiewicz Theorem [15, Theorem 8.14] implies that a
Hausdorff space is a Peano continuum if and only if there exists a continuous



surjection I — X. A Peano continuum which is uniquely arcwise connected is
a dendrite.

2.1 Shrinking wedges and their fundamental groups

Given a collection (X;,z;), j € S of spaces, let \/;co(X;, 2;) (or V;cg X; when
basepoints are clear from context) denote the usual one point union with the
weak topology. We will refer to the natural basepoint zy as the wedgepoint.

Definition 2.1. The shrinking wedge of an infinite sequence (X, z;), j € N of
based spaces is the space YjeN(Xj, x;) with the underlying set of \/jeN X; but
with the following topology: U < X is open if and only if U n X is open in X
for all j € N and if zp € U implies X; € U for all but finitely many j € N.

For both standard and shrinking wedges, we will refer to each space X; as
a wedge summand.

In the remainder of this section, we will assume that, for each j € N, the
space X is a connected CW-complex basepoint z; that serves as the basepoint
of X;. Let X = YjeN X, be the shrinking wedge and for each k € N, let

X< = \/?=1 X be finite wedge of the first £ spaces. Define

® Rii1,k: X<k+1 — X<k to be the retraction that collapses X411 to 2o ,

o Ry : X — X to be the retraction that collapses Uj>k X to xo.

The canonical induced map X — lim, X<y, 2 — (Ry(2)) is a homeomorphism;
we will sometimes identify X with this inverse limit representation.

We identify 7 (X<) with the free product *?:17T1(Xj)~ If m(X;) =1 for
all but finitely many j, then we arrive at the finitely generated case m (X) =
m1(X<g) for some k. To avoid this situation we will assume that m(X;) # 1
for infinitely many j. By grouping and rearranging some of the m1(X};), we may
assume that m1(X,;) # 1 for all j. In this case, m (X) will be uncountable and
not isomorphic to the infinite free product of the groups m1(X;). We recall the
two main approaches to characterizing the elements of 71(X): (1) the inverse
limit /shape theoretic approach and (2) infinite reduced words.

The idea of the shape theoretic approach is to embed 71 (X) into an inverse
limit of the fundamental groups of the approximating projections. It is well-
known that shrinking wedges of CW-complexes are mi-shape injective in the
following sense.

Theorem 2.2. [13] If X = YjeN X; is a shrinking wedge of C'W-complexes,
then the canonical homeomorphism ¢x : m(X) — lim, m(X<k), ¢x(a) =
((Ri)# () is injective.

Thus « € m(X) is non-trivial if and only if there exists k& € N such that
(Rk)#(a) # 1 in the free product *?zlwl(Xj).

The second approach assigns a unique infinite word to each element of m (X).
A word is a function w from a countable linearly ordered set W to | J;ey m1(X;)
(assuming 71 (X;) nm (X)) = {1} when j # j') such that w—! (71 (X)) is finite
for all j € N. If v is another word and there is an order isomorphism « : W — ¥



such that v o k = w, then we consider w and v isomorphic (and write w = v).
The collection of all isomorphism classes words # is a set.

Given a word w and finite set F' € N, we define the projection word wg :
Wr = [Jjenm1(X;) to be the finite word obtained by deleting all letters in
m1(X;), j ¢ F. More precisely, wp = {¢ € W | w({) € |J;epm(X;)} and
wr(¢) = w(f) whenever { € wrp. We may regard wr as an unreduced word
representing an element of the free product #jcpmi(X;).

Given w,v € #', we write w ~ v if for every finite subset FF € N, the
reduced representatives of wp and vp in #;epmi(X;) are equal. Since ~ is an
equivalence relation on #, we let [w] denote the equivalence class of w. The set
®@jenm1(X;) = # /~ becomes a group with the operation [w][v] = [wv] where
wv is the concatenation of the reduced words with wv defined as the linear
order sum w +v. The identity e or “empty word” is the equivalence class of the
identity on the 1-point ordered set {1} — {1}.

A word w € # is reduced if (1) whenever w = avb, we have [v] # e and
(2) whenever ¢, ¢ are consecutive elements in w, w(¢) and w(¢') lie in distinct
groups 71 (X;). Intuitively, w is reduced if it has no trivial subwords (including
w itself) and if it is not possible to combine any existing consecutive letters. It
is known that for every word w € #, there exists a reduced word v, unique up
to isomorphism, such that [w] = [v] (see [4, Theorem 1.4]).

The projection maps ®@;m1(X;) = m(X<k), [w] — [wr] where FF = {1,2,... k}
agree with the bonding maps (Rx11,%)% : 1 (X<k+1) = 7m1(X<k) and induce a
homomorphism 1 : ®;71(X;) — lim, 71 (X<x) such that Im()) = Im(¢x).

Given a non-constant loop 8 : I — X based at zg, let 8 be the set of
connected components of 371(X\{zo}) with the linear ordering inherited from
I. There is a well-defined word wg : 8 — Ujen m1(X;) given by ws((a,b)) =
[a{a,51]- Now x([B]) = [wg] defines a group isomorphism satisfying Yyox = ¢x.

¢ .
G —— lim 7 (X<k)
X ¥
®;m(X;)

Definition 2.3. We say that a loop 8 : I — X based at zq is reduced if g is
constant or if wg is a reduced word in #'.

Considering the above diagram, it follows that every loop a: I — X based
at xg is path-homotopic to a reduced loop B. Moreover, reduced loop represen-
tatives of homotopy classes are unique in the following sense: if 8 and  are
path-homotopic reduced loops, then there is an order-isomorphism « : 8 — 7,
such that if (a,b) € 8 and x((a,b)) = (c,d) € 7, then Blia,p] = Vl[e,a) as loops in
one of the spaces X;. Therefore, if @ € m1(X), we may also use the symbol « to
denote a choice of reduced loop in a.



2.2 The locally path connected coreflection

Because inverse limits of locally path connected spaces are not always locally
path connected, we require the following construction.

Definition 2.4. The locally path-connected coreflection of a space X is the
space lpc(X) with the same underlying set as X but with topology generated
by the basis consisting of all path components of the open sets in X.

The topology of Ipc(X) is finer than that of X thus the identity function
id : Ipc(X) — X is continuous. It is well-known that Ipc(X) is locally path
connected and that lpc(X) = X if and only if X is already locally path con-
nected. The construction of lpc(X) defines a functor lpc : Top — Lpc from the
category of topological spaces to the full subcategory of locally path connected
spaces. This functor is a coreflection in the sense that Ipc is right adjoint to the
inclusion functor Lpc — Top. In other words, if Z is locally path connected,
then a function f : Z — X is continuous if and only if f : Z — Ipc(X) is
continuous. In particular, X and lpc(X) share the same set of continuous func-
tions from I™. It follows that id : lpc(X) — X is a bijective weak homotopy
equivalence.

Since the direct product of locally path-connected spaces is locally path
connected, Ipc([[; X;) = [];lpc(X;) in Top. In particular, Ipc(X x I) =
Ipc(X) x I allows one to prove the following proposition.

Proposition 2.5. If f : X - Y and g : Y — X are (based or unbased)
homotopy inverses, then so are lpc(f) : lpc(X) — lpe(Y) and lpc(g) : lpe(Y) —
Ipe(X).

One should be wary of limits of inverse systems in Lpc because inverse limits
of locally path connected spaces in Lpc and Top do not always agree. If lir_nj X;

is an inverse limit in Top of locally path connected spaces (viewed as a subspace
of ]_[j X;), then lpc(liilj X;) is the space that gives the limit of the same inverse
system in Lpc.

2.3 Generalized universal covering maps

When each X is a connected, non-simply connected CW-complex, Y j X; will
not have a universal covering space. However Y j X; always admits a generalized
universal covering space in the sense of Fischer-Zastrow [7]. The idea behind this
notion of “generalized (universal) covering map” is to use the lifting properties
of covering maps as the definition and work internal to the category of path-
connected, locally path-connected spaces.

Definition 2.6. A map ¢ : £ — X is a generalized covering map if E is
non-empty, path connected, and locally path connected and if for any map
f:(Y,y) » (X,x) from a path-connected, locally path-connected space Y and
point e € ¢7!(z) such that fu(m1(Y,y)) < gu(m1(E,€)), there is a unique map
f: (Y,y) > (E,e) such that go f = f. Moreover, if E is simply connected,



we call ¢ a generalized universal covering map and E a generalized universal
covering space.

Unlike ordinary covering maps, based generalized covering maps are closed
under composition and form a complete category [2]. The following proposition
follows immediately from the definition and standard covering space theory
arguments.

Proposition 2.7. Ifq: (E,eq) — (X, o) satisfies all properties of being a gen-
eralized covering map except for the assumption that E is locally path connected,
then the induced homomorphism gy : m,(E, e0) — m, (X, zo) is an injection for
n =1 and an isomorphism for all n = 2.

Every (universal) covering map (in the usual sense) p : E — X where E
is path connected and X is locally path connected is a generalized (universal)
covering map. If p: E — X is a generalized universal covering map, then p is
an ordinary covering map if and only if X is semilocally simply connected. We
recall the following standard construction from covering space theory [16].

Definition 2.8. Whenever X is a space with given basepoint zy € X, let X
be the space of path-homotopy classes [«] of paths o : (I,0) — (X, z0). An
open neighborhood of [a] is a set of the form N([a],U) = {[a - €] | () € U}
where U is an open neighborhood of a(1) in X. This topology is the so-called
whisker topology on X. The homotopy class of the constant path at xg, which
we denote as T, is the basepoint of X.

The endpoint projection map p : X - X, p([a]) = «(1) is a continuous
surjection, which is open if and only if X is locally path connected and provides
a candidate for a generalized universal covering map.

Remark 2.9 (Standard Lifts of Paths). Every path in X lifts uniquely to X
relative to a chosen starting point. Suppose [8] € X and « : (1,0) — (X, 5(1))
is a path. Define paths o : I — X, s € I by a,(t) = a(st). The function
&: (1,0) » (X,[8]), &(s) = [ - as] defines a continuous lift of o starting at
[5] (cf. [7, Lemma 2.4]), which we refer to as a standard lift of a.

Remark 2.9 ensures that p : XX always has path-lifting. According to
[7, Prop. 2.14], p: X — X is a generalized universal covering map if and only
if p has the unique path-lifting property, that is, if the lift described in Remark
2.9 is the only lift of « starting at [§]. In general, this does not have to happen
[7, Example 2.7]. However, many sufficient conditions are known.

Theorem 2.10. [7] If X is metrizable and path-connected, xo € X, and the
canonical homomorphism ¢ : w1 (X, x9) — 71 (X, x0) to the first shape homotopy
group 1s injective, then p : X — X is a generalized universal covering map.

In the case of a shrinking wedge X =Y jen X of CW-complexes X}, the
homomorphism ¢ : 7 (X, z9) — #1(X, x0) is precisely that from Theorem 2.2.

10



Corollary 2.11. Every shrinking wedge of CW-complexes admits a generalized
universal covering space.

The next theorem guarantees ensures that whenever a generalized universal
covering map exists, it may be constructed as in Definition 2.8.

Theorem 2.12. [2, Section 5] If there exists a generalized universal covering
map q : (E,ep) — (X, x0), then there exists a homeomorphism h : (X,%g) —
(E,eq) such that goh = p.

We will also have need of the following separation axiom.

Lemma 2.13. [7, Lemmas 2.10 and 2.11] If p : X 5> X isa generalized
universal covering map where X is Hausdorff, then X is Hausdorff.

Definition 2.14 (A topology on the fundamental group). When p : X > Xisa
generalized universal covering map with respect to a basepoint xg € X, the fiber
p~1(xg) is precisely the fundamental group 71 (X, x¢). In particular, m (X, zo)
naturally inherits a topology as a subspace of X , which we also refer to as the
whisker topology. Since X is Hausdorff by the previous lemma, 71(X, z) is
Hausdorff with this topology.

If one has a map ¢ : E — X, which has all of the properties of a generalized
universal covering map except for E being locally path connected, the locally
path connected coreflection provides a “quick fix.” Indeed, for any path con-
nected space X, the identity function id : lpc(X) — X is a generalized covering
map.

Proposition 2.15. If ¢ : E — X has all of the properties of a generalized uni-
versal covering map except for the assumption that E is locally path connected,
then q : Ipc(E) — X is a generalized universal covering map.

_ Based generalized covering maps are closed under pullback using Ipc: If ¢ :
(X,Zo) — (X, z) is a based generalized covering map and f : (Y, yo) — (X, zo)
is a based map, then there is a pullback generalized covering map (of p over f)
p:(Y,5) = (Y,yo) and a map f : (Y, %) — (X, %) such that go f = fop. In
particular, we let C' be the path component of (Zg, yo) in the ordinary topological
pullback X xx Y = {([a],y) € X x Y | f(y) = (1)}, set ¥ = Ipc(C) and let p

and f:Y — X be the restrictions of the projection maps.

Proposition 2.16. If ¢ : (X,%) — (X,z) is a based generalized universal
covering map and [ : (Y,y0) — (X, x0) induces an injection on fundamental

groups, then the pullback p: Y — Y of q over f is also a generalized universal
covering.

The next corollary follows from straightforward lifting arguments so we omit
the proof.

11



Corollary 2.17. If f : (Y,y0) — (X, z0) is a based homotopy equivalence and
q: (X,Z0) = (X,z0) is a generalized universal covering map, then there exists
a generalized universal covering map p : (Y, 90) — (Y, y0) and a based homotopy
equivalence f : (Y, 90) — (X, Zo) such that go f = fop.

Because Theorem 2.2 holds for shrinking wedges, there is another way to

construct their generalized universal covering maps, which we detail in the next
remark.

Remark 2.18 (Inverse Limits of Coverings). Let (X,20) = Y cn(Xj, ;) be
a shrinking wedge of connected CW-complexes with inverse limit presentation
@k(ng,Rk+17k). If g<r : (X<, Z0) = (X<k,20), k € N are the universal
covering maps, we have the following situation.

(X <3, %o) (X <o, %0) (X<1,%0)
‘Ié3l q<2l qﬁlj/
X ---H(ng,xo)K)(ng,mo)ﬁ()(gl,xo)

Since )’ng is locally path connected and simply connected, the lifting property
of the maps ¢« ensures that we have maps }NB;HL;C : ()N(gkﬂjco) — ()N(gk,io)
making the diagram below commute. The result is an inverse sequence of
based generalized universal covering maps. Let X = lir_nk(ng,RkH,k) and
q= lim, g<k denote the respective inverse limits. Let Ry X - )N(sk be the
projection map for k£ € N.

ff:li_,c(Xsk»fo) o — (X3, Do) — (X2, T0) —— (X<1, T0)
q a<3 a<2 ‘1<1l
X H(ng,l’o)4)(Xg2,1’0)4)(X§1,1’0)
R3 2 Ra,1

Since X need not be path-connected, we let )’(\'0 be the path component of
Zo = (%o, &0, To,...) € X. Taking qq : ()?073?0) — (X, z0) to be the restriction
of g, a direct argument shows that gy has all the properties of a generalized
covering map except that )A(O need not be locally path connected. In particular,
Go# : m(Xo,Zo) — mi(X,x) is injective. By Proposition 2.15 and Theorem
2.12, Qo : lpc()’fo) — X is a generalized covering map.

Moreover, X, is simply connected: Given a loop & : (I,{0,1}) — ()2'0,:%),
Rpod is null-homotopic since X <k is simply connected. Therefore, Rio(god) =
ngoéko& is null-homotopic for all k. Since ¢x : (X, z¢) — @k m ( X<k, To)
is injective (Theorem 2.2) and ¢x ([§o &]) = 1, we have [gp o @] = 1. Since @
is mi-injective (Proposition 2.7), & is null-homotopic.

Since X, is simply connected and id : Ipc(Xy) — X is a weak homo-
topy equivalence, 1pc()A(0) is simply connected. According to Proposition 2.15,
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Qo : lpc()z'o) — X satisfies all criteria to be a generalized universal cover-
ing map. Theorem 2.12 now implies that there is a unique homeomorphism
ox : (X, Zg) = (Ipe(Xp), To) such that gy o ¢ = q. We use “¢x” to denote this
map because its restriction to the basepoint-fiber: p~!(zg) — lim, a; (zo) is
precisely the homomorphism ¢x from Theorem 2.2.

)Z— L} 1pC(20) L) X{)

Corollary 2.19. Let X = YjeN

and Ry, : X - )?gk be defined as in Remark 2.18. If W s locally path connected
and f W — )N(J's a function, then the following are equivalent:

(1) f: W — X is continuous,

(2) ¢xof W — X, is continuous,

(8) Ryodxof: W — Xey is continuous for all k € N.

X; be a shrinking wedge and ¢x : X > )A(O

3 Attaching whiskers and choosing maximal trees

At this point, we being to fix spaces and establish notation that will be used
throughout the remainder of the paper. We assume that, for each j € N, the
space X is a fixed connected, non-simply connected, CW-complex with a sin-
gle O-cell x; that serves as the basepoint of X;. Let g; : )N(j — X, be the
universal cover of the individual wedge summands. We use the notation con-
sistent with that in Section 2.1, namely, X = YjeN X is the shrinking wedge
with wedgepoint xy and for each k£ € N, let X< = \/?:1 X; € X. Addi-
tionally, Rp41,r @ X<p+1 — X<r and Ry : X — Xgj are the canonical re-
tractions and g<y : ng — X< is the universal covering map of the finite
wedge. We apply the construction in Remark 2.18 to the retractions Rjy1.
and covering maps g« and fix the notation used there. Since the canonical ho-
momorphism ¢x : m(X) — lim, m(X<p) is injective (Theorem 2.2) X admits
a generalized universal covering map ¢ : X — X and there is a homeomorphism
bx: X — Ipc(Xo) such that gg o opx = q.

3.1 Attaching whiskers: replacing X with YV

Let Y; = X; x{0}u{z;} xI be the subspace of X; x I with basepoint y; = (z;, 1).
By identifying X; with X, x {0}, we may treat Y; as the CW-complex consisting
of X; and a “whisker” e; = {x;} x I attached at z;. Let p; : ¥; — Y; be the
universal covering map. The homotopy extension property of the pair (X;,z;)
allows us to choose a retraction p; : X; x I — Y} so that p;1(x) = p;(x,1) is
a based homotopy inverse of the quotient map (; : ¥; — X that collapses the
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whisker {z;} x I to x; (see Figure 3). In particular, {; o u; is a based homotopy
from idx,; to ¢j o pj1. A based homotopy from idy, to ;1 o (; is illustrated in
Figure 4.

Figure 3: The based homotopy equivalence (; : Y; — X, which collapses the
arc e;.

B
Figure 4: The based homotopy Y; x I — Y; from idy, to p; 10(; is a composition
which first applies y; to the subspace X; x I, which is illustrated as a cylinder.

The square e; x I is mapped to e; so that the upper left triangle maps to y;
and the lower right triangle is projected linearly.

Let Y =Y jeN(Yj7 y;j) be the shrinking wedge with wedgepoint yo and for
each k e N, let Y¢i, = \/?=1 Y; be the finite wedge viewed as retractions of Y.
The respective canonical retractions will be denoted by 7541.% @ Y<r+1 — Y<i
and 7, : Y — Y and the universal covering maps by p; : ¥; — Y; and
pek : Yer = Yar.

Lemma 3.1. The quotient map ¢ : Y — X that collapses Uj e; o yo 1S a
based-homotopy equivalence

Proof. Let 1 : X — Y be the map whose restriction to X; is uj1. Let K; =
Cjopj: X;xI— X;and define K : X x I — X so the restriction to X; x I
is K;. Since each Kj is the constant homotopy at the basepoint, K is well-
defined. Since the projection Ry o K = \/ff:1 K; : X x I - Xy, is continuous
for every k € N, K is continuous. By construction, K is a homotopy from idx
to Copu. Next, let L; : Y; x I — Y be the based homotopy from idy, to
4.1 0 ¢ illustrated in Figure 4. The analogous construction shows that one can
construct a homotopy L from idy; to ;1 o ¢ using the maps L;. O
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X

Xo

Figure 5: The based homotopy equivalence ( : Y — X, which collapses the
attached arcs.

Remark 3.2. The construction of the homotopy equivalence in the proof of
Lemma 3.1 shows that a sequence of based homotopy equivalences (A4;,a;) ~
(Bj,b;), j € Ninduced a based homotopy equivalence VjeN(Aj7 a;) ~ YjeN(Bj, b;)
of the shrinking wedges. Thus, if desired one may replace each X; with any rep-
resentative of its homotopy type.

The space Y is a shrinking wedge of CW-complexes and so the content of
Remark 2.18 applies. In particular, there are lifted maps 7,415 : Y<k+1 — Y<k

satisfying 7x11.k © P<k+1 = P<k © Tht1,k-

Tlt1,k o
Verin— =%

<k
Pk+1J lpk

Yert1 oy Yk
We have ¥V = LiLnk(}N/gk,FkH,k) with projection maps 7 : Yy - i\}gk and f/b is
the path component of gy = (go) in Y. Set D= im, p<i and let Do : )A/o —-Y
be the restriction of p to }A’o. The canonical homomorphism ¢y : m(Y) —
im, m (Yer), (@) = ((r)#()) is injective.

There also exists a generalized universal covering map p : Y — Y where Y
has the standard construction (Definition 2.8). The lifting property of p<j gives
an induced map oy, : Y - )W/<k, 0k([¢]) = [rk ©£]. The canonical map ¢y : Y —
Yo, ¢y () = (or(a )) is a continuous bijection, which satisfies 7 0 ¢y = gg. The
coreflection ¢y : Y — lpc(YO) is a homeomorphism.

Ok

~/A—\~

DA L v

By Corollary 2.17, the based homotopy equivalence ¢ : Y — X lifts to a based
homotopy equivalence ¢ : Y — X satisfying go( = (op. Similarly, the homotopy
equivalence (¢ = \/f 1G5« Y = Xy lifts to based homotopy equivalence
<<k Y<k — X<k such that ggp o §<k = pgk © §<k Since, Rk+1 kO C<k+1 =
C<k O Tk+1,k, We may take the limit C hm Cgk Y > X. By lifting the
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homotopy inverse for (<; and the relevant homotopies, it is straightforward
from taking inverse limits that E is a homotopy equivalence (even though the
domain and codomain are neither path connected nor locally path connected).
Moreover, the restriction Co YO — Xo to the path component of the basepoint
is also a homotopy equivalence. In summary, we have the following commutative
diagram where the vertical maps are homotopy equivalences.

T LN 7
CJ lfo
X+ X— X,

_ The above shows that we may replace X with Y, X with 37' and )’(\'0 with
Yp without any loss of homotoplcal or shape-theoretic 1nf0rmat10n The arcs in
Y will provide “extra space” for performing suitable deformations of Y that are
not possible in X.

i><:z<—m *<?

Remark 3.3. [Metrizability] In general, CW-complexes are not metrizable.
Consequently, X and Y will not always be metrizable. However, when each X
is locally finite, each X is metrizable. Consequently, Y; and the universal covers
X and Y are metrizable. Since limits of inverse sequences of metrizable spaces
are metrizable, X Y and the subspaces Xo, Yo will be metrizable. Finally, it
is known that Ipc preserves metrizability. Therefore, X and Y are metrizable
whenever each X is locally finite.

Even if some X; are not metrizable, X and Y are still highly structured.
Indeed, every compact subset of a CW-complex is metrizable. Combining this
with the arguments used in the previous paragraph, it follows that all compact
subspaces of X, Y, X, and Y are metrizable.

3.2 Collapsing maximal trees T; < )N(j

Since X ;j is a CW-complex, we may fix a maximal tree T in the 1-skeleton of X -
Since ()Af 5, T;) has the homotopy extension property, the map X =0 = X i/T;
that collapses T to a point is a homotopy equivalence. Let c; be the image of
T; in Cj. Now, Cj is a simply connected CW-complex with a single 0-cell ¢;
and 7, (C;) = mp(X;) for n > 2.

The inclusion X; — Y; induces an embedding X = §7J in the following way.
Recall that }ij is defined to be the space of path-homotopy classes of paths in
Y; starting at y;. Let 7; : I — Y}, 7;(t) = (2,1 — t) be the path from y; to z;
that parameterizes the arc e; and define 7; 5 : I — Y by 75 4(t) = 7;(st) for each
s € I. We will also use the symbols 7; and 7; s to denote the path-homotopy
classes so that 7; = [7;] and 7, s = [7} 5]

e We identify )Z'j with the subspace {7;6 € 37'] | 6 € X'j} of }N/J by the closed

embedding X; — Y, § — 7;6. Under this identification, Z; = 7; is the
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basepoint of X e
o for each S e mi(Y;), ej 3 = {f7,s € )N/J | s € I} is an arc.
o for § € mi(Y;), Z;3 = B7; is the point where the arc e; g meets )Afj and
¥;,8 = B is the free endpoint of e; 3. Note that ¢; = ¥;,1 is the basepoint
of ffj We refer to the points 4; g as the arc-endpoints of }N/J
e T, =T;u Uﬂem(Yj) e; 5 is a maximal tree in 173
In summary, the space }M/j consists of the subspace X ; with an arc e; g attached
at At € p}l(acj) for each g € m(Yj).

Figure 6: The structure of the universal covering map p; : XN/J — Y; where the
subspace X ; is illustrated as a disk. The arc-endpoints form the fiber pjfl(yj)
and the attachment points form the fiber p]fl(xj). The path illustrated in Y; is
the lift of a given 8 € m(Y}), which can be factored as TjéTj_l for ¢ € m (X;).

We may identify the quotient space D; = }7} /T; with the one-point union
D; = (Cj,¢j) v (Ej,c;) where E; = f;(T;) is a wedge of arcs with the weak
topology. The quotient map f; : }7] — D; is also a homotopy equivalence (see
Figure 7). We will also write e; 3 to denote the arc f;(e; ) in E; and ;3
to denote its endpoint. We give a specific construction of a homotopy inverse
gj : Y;/T; = Y of f; since we will need for it to have special features.

Figure 7: The quotient map f; : 17] — D; where X ; is illustrated as a disk in
the domain.
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e Since (17']7 X ;) has the homotopy extension property, there is a retraction
hy:Y; x I —Y; x {0} U X; x I. Instead of using an arbitrary retraction,
we choose hy so that

—if aj3 = {y75s | s € [0,1/3]} is the third of e;g containing the
arc-endpoint J; g, then hy projects a; g x I vertically onto a; g x {0},
— n(ejs x 1) S (5,5 x {0}) v (Tjp x I).

~

e Since (X, T;) has the homotopy extension property, there is a retraction
hy : Yy x {0} UX; x I - Y; x {0} UTj x I such that hy(X; x I)
X;x {0y uT;x 1.
e Define hs : Y; x {0} UTj x I — Y to be the identity on Y; x {0} and, on
T; x I, to be a choice of contraction T; x I — T} for T} (there will be no
benefit to choosing this to be a based contraction of Tj).
Let Hj = hgohgohy : }N/j x [ — )7] (see Figure 8). The map H;(y, 1) : )7] — f@
is constant on 7; and thus induces a unique map g; : D; — }N/j satisfying
gjo fj(y) = Hj(y,1). By construction, H; is a homotopy from idgy to g; o f;.
Because we require H;(T; x I) € T;, H; cannot be constructed as a lift of the
homotopy Y; x I — Y; used in Section 3.1 (recall Figure 4).

Figure 8: The homotopy Hj : )N’J x I — f’J constructed as a composition. There

is a square attached to X; x I (represented by the cylinder), at each vertex of
T};; however, this is not reflected in this illustration for the sake of clarity. T; x I
is represented by the shaded gray surface.

The map fj o Hj : 17'] x I — Dj sends T; x I to the point ¢; and so there is

18



a unique map G; : D; x I — D; making the following diagram commute.

~ Hj ~
Y, x I —57Y,

fi Xidl ij

D]XIHDJ
Gj

Since G,;(f;(y),1) = fjoH,(y,1) = f;og,0f;(y) where f; is surjective, it follows
that G;(d, 1) = f; o g;(d). Thus G; is a homotopy from idp, to f; o g;.
While the construction of f;, g;, H;, and G; is mostly standard ([9, Prop.
0.17]), our choice of hy and hs ensure the following important features.
(1) H; and G, are the constant homotopies on a uniform neighborhood of
every arc-endpoint, N
(2) £;(X,) € C; and g,(Cy) € X,
(3) H (X x I) € X; and G,(C; x I) € Cj,
(4) £(T;) € E; and g;(E;) € T,
(5) Hy(T; x 1)< T, and G, (E, x I) € Ej.
Note that (2) and (3) imply that the restricted maps (fj)|)7j : )Afj — C; and

2

gi)le, : C; — X, are homotopy inverses. Similarly, (4) and (5) imply that
3)1C; J J

Nt : T; > E; and (¢;)|g. : E; —» T, are homotopy inverses.
()l j J j 9i)E; j J Py

3.3 Quotients of 17 by translates of Tj

~

The fundamental group 7 (Y;) acts on Y by deck transformation: Ag : Y

J

Ag(a) = Ba, B € m1(Y;). Note that Ag maps m-cells to m-cells, Ag( J) =
and that Ag permutes the discrete set of arc-endpoints {7, | 7 € 7r1( b1
particular, the translated trees 5T = Ag(T;) and T; = Ag(T;) are maxnnal

trees in the 1-skeleton of X and Y respectively. Later on, we will need to

Y;,
f(

consider quotients of Y by arbitrary translates of the tree 87}. For this purpose,
we establish notation for the corresponding homotopy equivalences.

Let Djg = Y/ﬁT be the quotient of Y obtained by collapsing 87} to a
point. If fj 5 : ¥; — D; 4 is the quotient map, then there is a unique ho-
momorphism dg : Dj — D; g such that the left square in the diagram below
commutes. Define g; 3 : Dj g — 57] by gj s = Agogjo 6&1 so the square on the
right commutes.

T 9j

L

'
g<;
>
™
: .
ol —
g

<.

I s Dij.p 958

Since the vertical maps are homeomorphisms, f; g and g; 3 are homotopy equiv-
alences. To verify that these are homotopy inverses of each other, we construct
the -translates of H; and G;. Set
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(1) Hj3 = Ago Hjo (A" xidy),

(2) Gjp=630G;0 (05" xidy).
We now have maps Hj g : 37'] x I — EN/] and G : D; x I — D; that make
the left and right faces of the following cube commute. The top face commutes
by the definition of Gj. The front and back faces commute by the definition of
fj, 3. Since the vertical maps are homeomorphisms, the bottom face commutes.

lnd fj xid
Dj

x I
G
H; 5pxid
) D,

C1
N (C1)
V1 Lt pogx 1 s

D
fiB

A straightforward check shows that H; g is a homotopy from z'df/j to gjpo fis
and G g is a homotopy from idp; to fjs© g;s-

Note that we have an analogous wedge point ¢; 3 = f; 3(8T};) = ds(c;) and
subspaces C; g = 0(C;) and E; g = dg(E;) from which we have the decomposi-
tion Dj g = (C} 3,¢j8) Vv (Ejg,c¢j3). Finally, we point out that the S-translated
homotopies H; g and G g enjoy the following properties just like the original
maps H; and Gj.

(1) Hj and G;p are the constant homotopies on a uniform neighborhood of

every arc-endpoint, N
(2) f.5(X;) € Cjp and g;,5(Cj 5) S Xj,

(3) Hj,B(Xj X I) c Xj and Gj,B(Cj,B X I) c Cj’ﬁ,
(4) f3,8(BT;) € Ejp and g;,5(Ejp) < AT,

(5) Hj”g(ﬁTj x I)c BT; and ijﬁ(EJ}B x I)c E; 3.
Note that (2) and (3) imply that the restricted maps (f; 3)

7.8

|3(“ : )?j i Cj,,B and
(95,8)|c; 5 : Cjp— )Z'j are homotopy inverses. Similarly, (4) and (5) imply that
(fi.8)lpr, : BT; = Ejp and (g;,8)|e, 5 : Ejp — FT; are homotopy inverses.

Remark 3.4. For 3,7 € m(Y;), we also have a canonical homeomorphism
D; 3 — Dj~3. Formally, this map is d, o 651, however, since it is determined
by left multiplication by 7, we will also denote it by d,. With this definition,
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the following diagram commutes for all j € N and 3, v € m1(Y;).

4 The inverse limits ¥ and Z

Since m,(X) = mp(X) = m,(Y) for all n > 2, we wish to analyze the homo-
topical structure of Y. However, directly verifying the continuity of the desired
deformations of Y appears to be exceptionally tedious. Thus we seek a detailed
description of the inverse system (Y<p, Tk+1.%)-

4.1 The behavior of 7 : }Nfgkﬂ — ?gk

For each k € N, the universal covering space ?gk is a CW-complex which is
the union of homeomorphic copies of }~/] attached to each other in a tree-like
fashion. We establish the following notation to keep track of the exact location
of such subspaces. Recall that Y<j is the set of path-homotopy classes of paths
in ?gk starting at g and the covering map p<y : ?sk — Y is the endpoint
projection so if a = [a], then pi(a) = a(1).

Definition 4.1. Fix 1 < j < k and let o : I — Y¢, be a reduced loop based at
yo. We say that o is non-Y-terminal if either « is constant or if for the maximal
element (a,b) € @, the loop af, ) has image in J;,; Yi. Let nty;  m(Y<y)
denote the subset of homotopy classes of non-Yj-terminal reduced loops.

An element o € nty, ; corresponds to a uniquely to a reduced word w,, in the
free product m (Y<i) = *f 1m1(Y5), which does not terminate in a letter from
m1(Y}). Since for every a € my(Y<y), there exists some j € N for which w, does
not end in a letter from m(Y;), we have p<k(y0) =m (Yer) = U§:1 nty ;.
When j < k, the coset projection 71 (Y<y) — m1(Y<i)/m1(Y;) restricts to a
bijection nty ; — m1(Y<k)/m1(Y;), so the elements of nty, ; are simply a canonical
choice of representatives of the elements of m;(Y<y)/m1(Y;). Moreover, nty ;
indexes the set of connected components of pzllc(Y-) in the following way: each

connected component ofp<k(Y ) is a set of the form Y gsa=1{afe€ Yer | B€ Y }
for some unique o € nty, ; and is homeomorphlc to Y In particular, there is a
canonical homeomorphism Ay, ; o y,w o« — Y given by Ay jo(af) = 8, which
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makes the following triangle commute.

yk,j,oz

Proposition 4.2. i\}gk is a CW complex, which has the weak topology with
respect to the subcompleres Vi jo, 1 < j <k, a € nty ;.

Remark 4.3. Generally we use “tilde” notation X to indicate that Definition
2.8 is being applied and so we create a slight inconsistency with our notation
for Vi j.o and Xy j o. However, this notation most suitably reflects the fact that

these two spaces are homeomorphic copies of ffj and X j respectively.

Allowing k to vary, note that the map 7,11 1 collapses each subspace 5;“1, k41,0
of ?gqul to a point. Additionally, 74415 folds the subspaces 37;“1’%& (for
fixed j < k) onto each other homeomorphically in a way that reflects word
reduction in m1(Ygg). This folding is non-trivial because the homomorphism
(re+1,6)# @ ™ (Y<r+1) — m1(Y<r), which deletes letters from w1 (Y<g41) need
not map ntyyq ; into nty ;. Indeed, if 1 # Br41 € M1 (Y<ps1) and 1 # B; € m1(Y;)
for j < k + 1, then BjﬁkJrl € nthrl,j but (’rkJrl’k»)#(Bj/BkJrl) = 5j ¢ Iltk,j. We
formalize this in the next remark.

Remark 4.4 (Behavior of 7;41%). Fix 1 <j<k+1and a€ntyy ;.
o If j =k +1, then 7,11 maps )NJHLLQ to the single point 7541 1 ().
e If 1 < j < k, we write 7441 () = o'y for unique o/ € nty; and
v € m1(Y;). In this case, Tgxt1,, maps 5;k+1,j7a homeomorphically onto
JN)k’j’a, by af — o'yf for 8 € )N/J In other words, if A, : 37'] — XN/J is the
deck transformation A, (8) = 0, then the following diagram of homeo-
morphisms commutes.

~ Thtlk O
ykJrl,j,a ’ yk,j,a’

Ak+1,j,al JAMJZOL’

A"/

Indeed, because o’ € nty, ; and v € m1(Y}), we have Ay ; o (a'vB) = vf.
Note that 7p1x(0) €Enty; & v=1< A, =idg .

4.2 The quotient maps f; : }Nfgk — 7

For 1 <j<kand a€nty;, let

Xieja =Ny

Ic,j,a()?j) ={ar;d e yk,j,a |d € )?j}
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be the copy of )~(j in Jwi;w-,a. We will use the fixed tree Tj < 17] and its translates

BT;, B € m(Y;) to define a tree Ty o in the l-skeleton of Xy ;.. Naively,
one could attempt to define such a tree as A;i o(T;). However, we wish for
these trees to be coherent with bonding maps 71, and the folding behavior of
this map encountered in the previous section suggests that such a choice would
ultimately fail. Although our choices will be entirely determined by our initial
choices of Tj in X;, we must construct them by induction on k.
For £k = j = 1, we have }71 = 371,1’1 and A1 = idf/l. Thus, we define
Tii1 =T and set 73 = {T11.1}
Suppose we have defined every element of 7 = {Tjo |1 < j < k,a €
nty ;} so that each T ;o is a maximal tree in the 1-skeleton of -)?k,j,ow
Case I: If j = k + 1, define Ti41 5,0 = Al;il,j,a(Tj)'
Case II: If 1 < j < k, write (7g41,1)#(0) = o’y for o € nty, ; and v €
m1(Y;). The tree Ty ;.o is defined in ﬁw_m by our induction hypothesis.
Therefore, we set

Titt g0 = Apija © 851 0 Ak (Thjar)
Set Ti+1 = {Tk+1,4,0 | 1 <7 < k+1,a € ntyyq ;}. This completes the induction.

Remark 4.5 (Coherence of trees). The inductive construction of Ty41 . Was
given precisely to match with the bonding maps 741 k.

CaseI: If j = k+1, then ?k+17k(77f+17j7a) = ?k+1,k(04) and Ak+1,j,a(77¢+1,j,a) =

T;.

Case ITI: If 1 < j < k and o’ and +y are as above then 71 maps Ty11,5.a
homeomorphically onto Ty j .. Moreover, if Ay j o (Tk jar) = BT}, then
the above definition ensures

Api1j.0(Tev1j.0) =7 BT}

Our inductive construction of 7y ;. implies that this tree will always corre-
spond to some translation 87 under the “bookkeeping” homeomorphism Ay, ; «
(this is stated formally in the next proposition). We will see later on that the
homomorphisms Ay, ; o are precisely the bridge required to witness the eventual
stabilization of certain sequences of trees {7k ; o, } Where j is fixed and k — oo.

Proposition 4.6. For every1 < j <k < o0 and a € nty j, Ay j.o(Trja) = BT
in'Y; for some B € mi(Yj).

Let Zj, be the quotient space of ffgk obtained by identifying each tree 7 ;o €
T} to a point and fk : ?gk — 7}, be the quotient map. Let 2z = fk(ﬂo) be
the basepoint of Zi. Since T consists of a collection of disjoint, contractible
subcomplexes in Y¢y, it is clear that quotient map fi is a homotopy equivalence
of CW-complexes. However, we wish to choose homotopy inverses for fk in a
coherent way. Toward this end, we first show that the spaces Zj are part of a
uniquely determined inverse system.
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Lemma 4.7. For each k € N, there is a unique map Ski1,k : Zp41 — Zi such
that the following diagram commutes.

T+l o~
Y<k+1 — Yk

f"‘k—}-ll j/f"‘k

Zyy1 —.— 2y
Sk+1

Proof. Since ka collapses each tree Tj4+1,j,o to a point, it suffices to show

that ka O Tk+1,6 also collapses Ti41,j,o to a point. If j = k 4+ 1, then 7,41k
maps Ti41,j,0 tO ?kﬂ k(a) and the conclusion is clear. Suppose 1 < j < k and
(rks1,k)# () = oy for & e nty, ; and v € 71'1(Y) By construction, 741, maps

Tk+1,j,o homeomorphically onto 7y j . Since fk maps Ty, j« to a point, the
conclusion follows. O

Definition 4.8. Let Z = Lillk(zk, Sk+1,k) be the inverse limit with basepoint
Zo = (zx) and projection maps 5 : 7 - 7. Additionally, let f = lim, fk :
(Y, %0) — (Z, %) be the inverse limit map.

Working toward the construction of a homotopy inverse of f , We oW con-
struct a spec1ﬁc coherent system of homotopy inverses {gx} for the sequence
{fk} Fix 1 < j <k, a€nty,, and set Dy jo = fk(y;wa) Notice that Zj
is a CW- complex Wlth the weak topology with respect the set of subcomplexes
of the form Dy jo. Let fkj o y,m o — ij « be the quotient map, which
is the restriction of fk to yk j,a- Recall that fk’],a collapses 7 j.o to a point
and, by Proposition 4.6, T ;o corresponds to some translation 87} in ffj, ie
Ak j.o(Tija) = BTj. In Section 3.2, we let .}v‘j7ﬁ . Y; = D; s be the quotient
map collapsing 8T} to a point. These observations make the next proposition
immediate.

Proposition 4.9. Suppose Apjo(Tij.a) = BL; for p € m1(Y;). Then there
is a canonical homeomorphism Ay j.o : D jo — Dj g that makes the following

square commute.
Ak Ja nd

Vo ——Y;

fw‘k,j,al J/fJB

Dija

We use the homeomorphisms A j. to maintain track of what the maps
Sk+1,k do to the spaces Dyy1 5o when j < k.

Lemma 4.10. Fiz 1< j <k+1 and o € nty11 ;. Suppose
o (Tht1k)#(e) = o'y for o/ € nty; and v € m(Y))
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o and Ay j o (Tkjar) = BT for B e mi(Y;).
Then the following cube commutes.

& Tht1,k ~
ykJrl,j,a yk,j o
A jiar
Abt1a Frttia
Frti,j,a Y] Y
(C2)
fjwflﬁ
Sk41,k
Dk+1,j70¢ Dk,j a’ fip
M+k
Djﬁflﬂ

Proof. Recall from Remark 4.5 that Ag11 .0 (Ti+1,,0) =7 'B8Tj. Commutativ-
ity of the top face was verified in Section 4.1. The left and right faces commute
by Proposition 4.9. The front face commutes is a special case of the left square
in Remark 3.4. The setup of the lemma is precisely the situation where 741
maps )Nik+17 j,o homeomorphically to )NJk,j@z. Therefore, the back face commutes
by the definition of §j41 5 (recall Lemma 4.7). Since the vertical maps are
surjective and all other faces commute, the bottom face commutes. O

4.3 A homotopy inverse g for f;;

In Section 3.3, we fixed a homotopy inverse g; 5 : D;z — }7} of fj s and ho-
motopies H; g and G;g. Using these pre-defined structures, we now construct
maps g : L — ?gk inductively as follows.

When k£ = 1, we have 171 = EN/j, Z1 = Dy and fl = f1. Thus we define
g1 = g1. For our induction hypothesis, we suppose that g has been defined so
that for all 1 < j < k and o € nty j, Gx(Dy j.a) S 37;@7]»)& and, in particular, g
maps the arc-endpoints of Dy, ; o bijectively to the arc-endpoints of \)th-,a. Let
Jkjo - Dijio = Yroj.o be the corresponding restriction of gi.

Fix 1 < j < k+1. We will determine gi.1 by deﬁmng its restriction to each
subcomplex Dyy1 j,o aS @ MAP Jr41,j,a : Prt1ja — yk+1,],

Case I: If j = k+1, then Ty41 ;o was constructed so that Agy1 j,0(Tet1,j,0) =

T;. By Lemma 4.9 (in the case 8 = 1), the left square below commutes. We
define 41,50 = A,;il o ©95 © Akt1,5,0 80 that the diagram on the right com-
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mutes.

~ Frt1 Gr+1
ykJrl,j,a > DkJrl,j,a > ykJrl,j,a

Ak+1,j,al JAHLJ;Q J,AHM’&

Yi—F—D; r

J 9i

j

<.

Case II: Suppose 1 < j < k and o € nty4q ;. Write

o (rpt1,k)#(a) =a'y for o € nty, ; and v € m(Y;)

o and Ay j o (Tkjar) = [373 for g € 7r1£Yj).
The restricted maps 7415 @ Vit1,j,0 = Vijor a0d 5541k * Dig1,j,0 = Dijar
are homeomorphisms. Since gy ;o is defined by hypothesis, we set gr+1 .o =
?k+1,k|§i+l . 0 Jk.j,0 © (Bk+1,k)|Drs1 .0 50 the the following diagram commutes.

~ Thtlk &
Vit1,j,0 — Ve jior
J s

§k+1,j,a1\ Tgk,j,a’

Dis1je0 = Dijor

Sk+1,k

In both cases, gk+1,j,« is continuous and maps arc-endpoints bijectively to arc-
endpoints. This completes the definition of all gy ;.. We will use the next
lemma to prove that g is well-defined.

Lemma 4.11. If1 < j < k < ©, a € nty;, and Mg jo0(Teja) = BT; for
B e mi(Y;), then the following square commutes.

=~ Ak,j,a
Vi ja ——

Y
!le,j,aT ng,ﬁ

Dkjo v— Dip
kg,

Proof. Fix 7 € N. We proceed by induction on k for £ > j. In the case
k = j, Gk j« is constructed according to Case I. In particular, 8 = 1 and the
commuting diagram is precisely the definition of g j.. Suppose that k > j
and that the diagram commutes for all o/ € nty ;. Since k + 1 > j, the map
Jk+1,5,a is constructed according to Case II. Using the notation from Case II
(for o € nty ;, and v, 5 € m1(Y;)), consider the following cube, which is the
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“inverse” of that in Lemma 4.10.

~ Tht1,k ~
yk+1,j,a yk,j,a’
Ak jal
Akm\‘ gkvmw \
Th+1,5,0 Y'] A }/J
(C3)
9j~—1p
Skt1,k
Dkﬂ,j,a Dk,j,a’ 95,8
/\k+k kkk‘
Djy-1p 7 Djs

Recall that Ag41j.0(Tht+1.4.0) = 7~ BT, and therefore, it suffices to show that
the left face commutes. The top and bottom faces are the same as in Lemma
4.10 and still commute. The back face commutes by the definition of gi41 ;-
The commutativity of the front face is a case of the right square in Remark 3.4.
The right face commutes by our induction hypothesis. Since all of the horizontal
maps are homeomorphisms, we conclude that the left face commutes. O

Theorem 4.12. For everyk €N, gy : Z, — ?gk 1s well-defined and continuous.
Moreover, _ N N
(1) Gr o fr : Y<p — Yy is the identity on p;i(yo),

(2) fk oGk : Zy — Zj is the identity on fk(p;i(yo)),
(8) and Gk © Sk41.k = Tht1,k © Jht1-

Proof. Fix k € N. Since Z; has the weak topology with respect to the subcom-
plexes Dy, ; o and each Gy ;. is clearly continuous, it suffices to check that gy, is
well defined. First, we make an observation: for any given j and « recall that
we have verified the commutativity of the diagram when Ay ; o(Tx j.o) = 8T}

ard fk,j,a gk,j,a ard fk,j,a
Ykja = Drja Vi j,a Dy j,a
Ak,j,al Ak’j’al Ak,j,aJ{ Ak’j’al
Y; D, Y; D;
I 3B g T s 3B

In Section 3.3, we constructed g; g and f; g so that g; go f; g is the identity map
on the arc-endpoints of Y; and f; 3 0 g; 3 is the identity on the arc-endpoints of

Dj 5. It follows from the diagram that gi ;g o fr ;s and fi ;g o gk ;3 are the
identities on the respective sets of arc-endpoints. N

Two distinct subcomplexes of the form Dy ;o (respectively Vi ja) either
meet at a single point or do not meet at all. Suppose {x} = Dy, j. o "Dy, j».or Where
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Dij.a # Di,jrar. We check that g j.o(2) = Gk,j7,a(2). By the definition of Fes
we have fi(y) = x for a unique point y. In partlcular {y} = g 0 Vi ir gl

Thus fi j.a(y) = f;w o'(y) = x. Since Gi ja © f;w,a and gk j,o © fk’j,o/ are the
identity on the arc-endpoints, we have

Gk (T) = Grj,a(frj,a (V) =Y = Gr,j 0 (fr,50,00(Y) = k57,00 (2).

This proves that g is well-defined.

Now that well-definedness of g, is established, both (1) and (2) follow im-
mediately from the fact in the first paragraph of the proof that for all j and «,
the compositions gx j.a © fr,j,a a0d Gk j,a © fr,j,o fix their respecive arc-endpoint
sets.

For (3), we verify that the following square commutes by checking that the
compositions agree on Dy 1 jq-

k+1k ind

Y<k+1 — Yk

§k+1T Tﬁk

Lyt — Ly,
Skt1,k

When 1 < j < k, Trg1k © Gr+1 and gx © 5p11k agree on Dyyq o by def-
inition of Grt1jq0. When j = k + 1, we have i1k © Git1,5,0(Prt1,j,0) S
Fk+1,k(yk+17j,a) = T,+1,x(). For the other composition, we have the following,

Ek o gk-&-l,k(IDk-&-l,j,a) = gk o §k+1,k o .f"‘lc+l(~)~}k+17j104)
= Gk © fr 0 Tht1,6(Vit+1,5,0)

= gkoﬁc(FkJrl,k(a))
= 7k+1,k(0‘)

where the last equality follows from (1). O

Since the maps gj agree with the bonding maps 741 5 and 511 %, we define
g = lim, gk 1 Z — Y to be the inverse limit map. Note that g(Zp) = o.

4.4 Coherence of ﬁ and g

To show the limit maps g : Z — Y and f Y > 27 are homotopy inverses, we
construct homotopies Hk from idy Vo to gk o fk and Gk from idz, to fk © g,
which are coherent with the respective bonding maps.

Theorem 4.13. For each k € N, there exist based homotopies ﬁk : ?Sk x I —
Y<i from id1~/<k to gi o fr and Gy : Z x I — Zy, from idz, to fi o g such that
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the following squares commute for all k € N.

~ Fk+1,k Xid ~ §k+1,k Xid
Yppr x I ————3 YV x I Zpa x I ——" 5 7, x T
Fﬁk+1l Jﬁk ék_HJ J@k
Vepp —— Yy, R — )
Tht1,k Sk41k

Remark 4.14. The key to proving Theorem 4.13 is the relationship between
the maps fx, g and the previously defined maps f; g and g;g. In particular,
whenever 1 < j < k < o, o € nty ;, and Ag j.o(Trja) = BT}, the following
squares commute:

3 Akja & ~ Ak ja o~
Veja —Y] Vija — Y]
fk,],al ij,ﬁ ﬁk‘j,aT ng.ﬂ
Dija BV Djp Di.ja BV Djs

Proof of Theorem 4.13. Let k € N. We define ﬁk and ék piecewise by defining
their values on the subcomplexes Vj jo x I and Dy j o x I of the respective
domains. Fix 1 < j <k and o € nty ; and | suppose Ak] a(Tkj,a) = BT; for B e
m1(Y5). Deﬁnemapr;”a ykmxl—»y,”a andeJa Dy jax1 = D ja
so that the following squares commute:

~ Hyjo ~ G ja
Vg X I ——= Vi ja Dy jo X I —— Dy ja
Ak ja Xidl lAk-j,a /\k’j’aXidJ JAWYQ
YVjxI—p——Y] Djp x 1 —-— Djg
3.8 3.8

When the left diagram is restricted to ¢t = 0, H; 3 becomes the identity map.
Therefore, Hk .o does too. Recall that H; g is a homotopy from zd to 95,8°f5.8-

Therefore, H k,j,a s @ homotopy from

Afl

k.j,o ids

o} de/] e} Ak,j7a = Vs
to

Aiao(@ipofip)ohrja = (Ai5a©9580Akja) 0 (Arja© fis 0 Akja)

= Gkja © [kja

where the second equality comes from the left square in Remark 4.14. Because
Gjp is a homotopy from idp, , to fj s o gjp, the same argument using the

right square in Remark 4.14 shows that G} j . is a homotopy from idp, ;. to
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J?lw o © Jkj,o- Additionally, since H; g and Gjg are the constant homotopy
on the respective sets of arc- endpomts the same holds for H k,j,a and Gk o
This last observation ensures that H k and Gk will be well-defined functions if
we define H;c to agree with ij o on y,” o and Gk to agree with G;” o on
Dy j.o (& detailed proof follows the same elementary line of argument used to
prove gy is well-defined). Since }A}gk has the weak topology with respect to the
subcomplexes ij%m H  is continuous. Similarly, C~1’k is continuous.

With the definition and continuity of ﬁk and ék established for all k, we
fix k and work toward proving that the two squares in the statement of the
theorem commute. Let 1 < j < K+ 1 and o € nty;, ;. We will show that

Hy, o (Tr41,5 x id) and 41,5 © Hr41 agree on each subcomplex Vii1,j,0 X 1.

Case I: If] =~]€+1, then $k+1,k(~)~)k+1,k,a) = 77k+1,k(05) and so 77k+1,k(ﬁk+1(.)~)k+l,k7a X
D) = k41,6 (Vit1,k,0) = Tht1,k(c). Moreover,

ﬁk(ﬁﬂ,k(ykﬂ,k,a x 1)) = ﬁk({Fk-&-l,k(a)} x I) = Tpy1k()

since Tr41.5() € p;i(yo) and Hy, is the constant homotopy on p;}c(yg).

Case II: Suppose 1 < j < k. Write 7p10(e) = o’y for o € nty; and
v e m(Y;). If F Akjor (Tkjor) = BT, then Ak+1,ja(77€+1,ja) = y~'BT}. Since
rk+1 r maps ka g homeomorphlcally onto yj kool it suffices to show that

H,w o O (Trt1k X id) = Ty onHJ « agree on y,m,j « X I, i.e. that the top
face of the following cube commutes.

5 jL\ik+1,j,o -
Vit1j,a X 1 Viv1j,a
Thtl,k
Trt1,k Xid Akt1,j,a
Ak41,j.aXid yk,j,oc’ x I — yk,j,a’
Hk,j,a’
(C4)
Ak,j,a’ X id
V. V. Ay
Y] X I H . }/j k,j,a!
3y T8
Ay
Ay xid
Y. x I Y,
J Hj s J

The front and back faces commute by the definition of fIkH,j’a and flm)a/.
Commutativity of the right face was given in Section 4.1 and the left face follows
immediately. It suffices to check the bottom face. Recall that for any v € m1(Y})

and n € }N/j, the formula for H;, is Hj,(n,t) = vH;(v~'n,t). Therefore, if
(n,t) e % x I, then

o (A, xid)(n,t) = Hjs(yn,t) = BH;(B 'y, 1)
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The other direction is

AyoH; —15(n,t) = Ay(v 'BH; (8 ' ym,t)) = BH; (8 ', 1)

This proves the bottom square commutes. We conclude that the top square
commutes, completing the proof for Case II.

The proof for the coherence of the maps Gy, with 5i41 1 is nearly identical,
replacing the homomorphisms A_ _ _ with A_ _ _ and A_ with J_ so we omit
the details. O

Theorem 4.15. The maps f: Y - Z and g: Z Y are homotopy inverses.
Proof. The maps H &, k € N form an inverse system of based homotopies.

Fg,zxid ~ 77271 Xid ~

---*>§~f3xI4>Y2><I*>Y1XI

V x I
7| = om o ow

Vs ———V,——— W

73,2 T2,1

The limit of this first system is a map " :A}’} x I — 17, which, by construc-
tion, is a based homotopy from idgy to go f. Here we are implicitly using the
fact that inverse limits commute with finite products to identify the limit with
mk(yﬁka$k+17k) X lillk(la 7;d)’\‘: Y xI.

Similarly, the homotopies G, k € N, form an inverse system of based homo-
topies.

~ 3 id 3 id
ZxT s Zax T2 7 12 7 T
él 63J é2J/ éll
A Zy —— Zy —— A
53,2 52,1

The limit of this second system is a map G:ZxI—2Z , which, by construction,
is a based homotopy from id; to fog. O

Proposition 4.16. For the maps f, I;T, and G defined above, the following

square commutes.
Y x1 i)
fxidl
Zx1 —

G

Ny ——— =D



Proof. Tt suffices to check that for all k£ € N, the following square commutes.
Once this is established, the result follows from taking the inverse limit over k
with the appropriate bonding maps in each position.

~ T o~
Yep x I —5 Yoy,

kaidl JJT‘I@

ZkXIN*}Zk
Gy

Fix 1 <j <k < and o € nty ;. Suppose Akj a(Tkj,a) = BT; for g e m(Y;).
We check that the two compositions agree on y,%a x I, i.e. that the top face
of the following cube commutes.

~ fkyj‘axid
Vijoa X 1 Dy ja x I
ék,j,cy
ﬁk,j,a )\k,j,a x1id
Ate.gaxid Vija — Di,jya
frga
(C5)
Ak j,a
Y; x I D.gx1 Py
i Foxia* Dis ke
G
H;j s
Y; D.
J Fip 7,8

The front and back faces commute by the definition of fk’j,a. The left and right

faces commute by the definitions of H, k,j,o and ék, 7, Tespectively. The bottom
face is the bottom face of Cube C1 in Section 3.3. Since the vertical maps are
homeomorphisms, the top face commutes. O

Recall that YO is the path component of gp in V. Let Zo = f(f’o). Since 20
is path connected and 9(%0) € YO, we have g(ZO) c Y,. Thus the restrictions
fo : Yo — ZO of f and o : Zo - Yo of g g are well-defined maps. A similar
argument gives restricted homotopies HO YO x I — YO and Go ZO x I — Zj.
Hence, we have the following corollary.

Corollary 4.17. The restricted maps fg : )A/o — 20 and gy : 20 — )/;0 are based
homotopy inverses. In particular, Hy is a based homotopy from idf’o to go o fo

and éo is a based homotopy from id20 to ﬁ) o go. Moreover, these homotopies
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make the following square commute.

?()XI&%

%Xidl lfn

20)([%20

0

Just as with }A’o, the space 20 need not be locally path connected. In the
next section we give a detailed account of the structure of ¥ so that we may
construct a locally path connected counterpart Z for Zj

5 The spaces Y and Z

5.1 The topological structure of Y

In this section, we provide a description of Y similar to that of XN/j, namely
a tree-like decomposition into copies of }N’] Just as the copies of f/] appear
in XN’gk according to the reduced words in m (?gk), the copies of 37'] in Y will
be arranged according to the infinite word structure of ®@;m(Y;). The main
difference between these two situations is that words in 71 (Y") may be indexed
by an infinite linear order and thus copies of ffj will appear in a corresponding
manner.

Definition 5.1. Fix j € N and let @ : I — Y be a reduced loop based at yq.
We say that a is non-Y;-terminal if either the linear order @ does not have a
maximal element or if (a,b) € @ is maximal and af, ) is a loop in (J;; Vi
For each j € N, let nt,. ; € 7 (Y) denote the subset of homotopy classes of
non-Y;-terminal reduced loops.

Remark 5.2. Just like the finite case, the set nt.. ; € m(Y") provides a canon-
ical choice of representatives for the coset space m1(Y")/m1(Y;). Indeed, the pro-
jection m1(Y) — m1(Y")/m1(Y;) restricts to a bijection nt.. ; — m1(Y)/m1(Y;).

Moreover, p~t(yo) = m(Y) = (U, ey 0t 5 since for every a € m1(Y'), the cor-
responding reduced word w,, either has no terminal letter or does not terminate
in a letter of m1(Yj) for all but one j.

Define the following subsets of Y for each a € nt, ;.
¢ Vija=1aBeY |BeY},

® Upja=H{aBeY | BeY\m(Y))},

o X, 0={afrjeY|BeY;}

By definition, we have /?nj,a S Uy ja S )N)o”a

Proposition 5.3. Fiz j € N. Then N
(1) p=(Y;) is the disjoint union of the sets V. jo, o € Nty ;.
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(2) p_l(Yj\{yo}) is the disjoint union of the sets Uy j o, o € nt 5,
(3) p~1(X;) is the disjoint union of the sets X, j.o, @ € Dty ;.

Proof. Uaemﬁ] Vrja S p L (Y;) is clear. Suppose v € p~1(Y;). If v € nt.. ;,
then V€ Y, Gy If'y ¢ nt.. ;, then we may erte v = af where o € nt.. ; and
BeY;, giving v € y,v,], This proves p~1( U{y, ol o€ ntﬁ Gt

To show the sets 37307]-,&, o € nty ; are dlsJ01nt suppose 7y € y,‘,],a N y,\,,jya,
for a, o € nty, ;. Write v = af = o'f for paths 38,5 € f/]\ﬂ'l(YJ) Now
B" = B(B')~ € m(Y;) corresponds to a letter in the group of reduced words
®;m1(Y;). Now § = af’(a’)"! =1 in m(Y) and so [ws] = e in ®;m(Y;).
However, this means that the unreduced word wawguw;,l is equivalent to the
empty word. Because w, and uf,1 are already reduced, this is only possible if
[wg] =e,ie. if f”/=1in 7r1(Y) It follows that o = «'.

(1) provides the non-trivial parts of the arguments for (2) and (3). The
remainder of these proofs are straightforward. O

Because Y is locally contractible at each point of Y\{yo}, a straightforward
argument gives the next proposition.

Proposition 5.4. For each o € nt. ;,
(1) Uy jo is open in 37',
(2) Uy j.a is a path component of p~* (Y\{y;}),
(3) Pl ;o  Up ja — Yi\ly;} is a surjective local homeomorphism.

Proposition 5.5. For each o € nt. ;, JNJ%J-,Q is the closure of Uy j.o in Y.

Proof. Note that 37, o consists of Uy ;o and the elements af, § € m(Y;).
Fixing 8 € m1(Y;), let V be a path-connected neighborhood of yo in Y so that

N(af,V) is a basic and path-connected neighborhood of af in Y. Since we
have assumed from the start that 7 (Y;) # 1, Y; consists of more than a point
and so there exists a path n : (1,0) = (V nYj,y;) with (1) # yo. Writing
~v = [n], we have afy € N(afp,V) r\L{,,]a This proves )& o S Uy j o Since
Upjo & :)), .o, it suffices to prove that y, j,a is closed in Y. Since Y is closed
in Y, p(Y;) is closed. Hence, it is enough to show that Y, ;o is closed in
pH(Y)). ~ N

Let v € p~}(Y;)\Vx,j,a- Proposition 5.3 gives that v € V.. j o where o #
o' € nty, ;. Write v = o/’ for 5’ € f/}

Case I: If 5’ does not represent a loop, i.e. ' ¢ m(Y;), then by (1) of the
previous proposition, U ;.o is an open neighborhood of «y disjoint from )7%73',&.

Case II: If 5’ € m1(Y;), we may use the fact that Y is Hausdorff to find a
path-connected neighborhood V of gy in Y such that « ¢ N(o/5’, V). Moreover,
since j is fixed, we may choose V' small enough so that V' nY; is homeomorphic
to a half-open arc in Y;\X;. We claim that N(¢/f', V) n \)N)»fﬂjya = . Suppose,
to obtain a contradiction, that a8 = o'f’6 for 8 € }7] and § € V (where V
has basepoint o). Note that §(1) lies in the half-open arc Y;\X;. Let € be the

34



homotopy class of the path I — Yj;, which parameterize the arc from 5(1) = (1)
to y; = yo. By our choice of V', we must have de € 7T1(Ui¢j Yi,y0), that is, wse
contains no letters from m(Y;).

Recall that «, o’ are being represented by reduced loops such that the cor-
responding reduced words w, and wy do not end in a letter from m(Y;). If
Be =1 in m(Y;), then a = o/ f'de, however, this contradicts a ¢ N (o', V).
If 1 # Be € m(Y;), then we have affe = o/f'de in 7 (Y) where Be € m1(Y;).
Now, wqge consists of the reduced word w,, which does not end in a letter from
m1(Y}), followed by the non-trivial letter (8¢) € m1(Y;). Thus wege is a reduced
representative of wyB'ws.. However, wq/ [’ is reduced and ws. has no letters
from 7 (Y;). The only way for wa 8'wse to reduce to wq(Be) is if [wse] = e,
that is, if de = 1. However, this would give a(B¢) = o/f’. Since wq(8€) = w8’
as reduced words, the terminal letters must be equal, i.e. B¢ = 3’. This implies
a = o'; a contradiction. O

Proposition 5.6. For each o € nty, j, Y. j.o is a path component of p~(Y;).
Moreover, V. j o 18 locally path connected and simply connected.

Proof. Let T' : I — p~1(Y;) be a path. By Proposition 5.3, we may assume
I'(0) = af for a € nt.; and B € Y;. Now v = pol : [ — Y; starts at 5(1).
Let 75(t) = aB[v:] be the standard lift as described in Remark 2.9. Now it is
clear that 7, is a path in )N/I .o and by unique path-lifting, we have I' = ;.
Moreover, since Y; is path-connected, standard lifts may be used to show each
JNJ@J-,Q is path-connected. We conclude that the sets JNZ%J-’@, o € nt., ; are the
path components of p~*(Y;).

Next, we fix o € nt, ; and show JN)IJ-’Q is locally path connected. It is clear
from (3) of Proposition 5.4 that Y, ; o is locally path connected at the points of
Us jo- Fixapf e JN/OO,j’a for 8 € m1(Y;). Let V be a neighborhood of yo in Y such
that V A Y is a half-open arc in Y;\X;. We will show that N(a3,V) n Yy ja
is path connected. Consider afy = af’ for v € V and B e SN/J From this, we
have v = 37!/’. Therefore, v represents a path in Y; n V. In particular, if
€ : I —» Y; n'V parameterizes the arc from yo to (1), then the standard lift
€s(t) = af[e] gives a path in N(af,V) n :)77,7]-104 from aff to afy.

Finally, suppose ¢ : I — )7%73',& is a loop based at «. Since Y is simply
connected, ¢ is null-homotopic in Y. Since pol has image in Y} and Yj is a retract
of Y, pol is null-homotopic loop in Y;. Let K : (I2,{0,1} x T uI x{1}) = (Y;,y;)
be a null-homotopy of pol. Consider the lift K : (12, {0,1}xIuIx{1}) — (Y, a)
of K. Since Im(K) is path-connected and contains o, Im(K) must lie in the path
component Y., .o of p71(Y;) (recall Proposition 5.4). Unique lifting ensures that
Kisa null-homotopy of £. We conclude that JNJIJ’Q is simply connected. O

Theorem 5.7. For each o € nt,. ;, the restriction p|)~,f Vyga Y050
0,7, o
universal covering map.
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Proof. The restriction p|)~,‘ ~inherits the required lifting property of a gen-
0,7,

eralized covering map from that of p. Proposition 5.6 ensures that J?m,j,a is
path connected, locally path connected, and simply connected. This fulfills all
requirements for p|< 5, .. to be a generalized universal covering map. It follows

from standard coverlng space theory [16] that every generalized covering map
where the codomain is path connected, locally path connected, and semilocally
simply connected is a covering map in the usual sense. Since Y; meets all of
these conditions, p|3~,‘x.j‘a is a universal covering map. O

Recall that p; : ()7],%) — (Y;,y;) denotes the universal covering map over
Y; (also with the whisker topology construction).

Corollary 5.8. For each o € nt. j, the map Ay j o : 37%\,]»’0( i M ja(afB) =
B is a homeomorphism satisfying p; o A j.o = pl5, i

Using the previous results for y, i and the fact that A j a(z’\f ©.j,e) Ay
be identified with the copy of X, ;j in Y, we also have the following.

Prop051t10n 5.9. For each a € nt. ;,
° X7 .o 18 closed in Y
o XL,g,a is a path component of p~*(X;),
o The restriction p|/,gb,m : .fm,ja — X, is a universal covering map.

Definition 5.10. For each a € nt, ; and v € 71(Y;), define
® ey jany = {7, | s€1},
® T jay = QYT
L goo,j,a,'y = ay

We refer to the points ¥y jq.~ as the arc-endpoints of )NJIJQ.

Remark 5.11. Under the identification of A j «, \)N)ﬁ,\;,jya consists of )?x,j’a with
an arc €., ;.o attached at T, j o, for each v € m;(Y;). Moreover, the subspace

of arc-endpoints Vo j.o\Us jo = {rjar | 7 € m1(Y;)} is discrete and closed in
Y.

Recall that ¢y : Y — Yp, oy () = (ox(a)) is a continuous bijection, which
need not be a homeomorphism. We end this section by showing that ¢y is a
homeomorphism on the individual subspaces Y, .5, Of Y.

Theorem 5.12. Fiz j € N and a € nt,, ;. Write gop(e) = oy for of €
nty ; and v, € mi(Y;). The continuous injection ¢y : Y — Yy maps Vi ja

homeomorphically onto Yo N (szj jk7j1a2 X Hf;ll{a% })

Proof. To sunphfy notation, let A, = y”a, Ay ={ogtfor1 < j<k-1
and A = y,” o, for k = j. We wish to show that ¢y maps Ay onto A =
YO N (]_[k>1 Ak). We first check that ¢y(y%,j,a) C A.
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Suppose aff € A, for 8 € ffj When k > j, or(af) = a)(vf) where
B € 57] Thus ox(af) € A,. When 1 < k < j —1, we have gi(af) = a,. Thus
oy (apf) € A, proving the desired inclusion.

When k > j, the restricted map g : A — Ay is given by oi(af) = o, (v 5)
and thus the following diagram commutes.

A g

Ay
J/Ak,j,a;e
v,

Since the veritical and bottom maps are homeomorphisms, so is the top map.
Then we have a sub-inverse system (Ag, (Fr4+1,6)| 4541 ) Of Yk, Trt1,x) with limit
A= @k Ay. Since the maps (7x41,x)|a,,, are homeomorphisms for k£ > j, the
projection maps (7x)|a : A — Ay are homeomorphisms for & > j. Thus for
all k > j, the maps (7)|a" © (0x)|a, : A» — A are homeomorphisms. Since
0 ¢y = ok, we have ¢y |a, = (Fi)|a" © (0k)]a,. O

(or)a,

A, SElAe

—_
A,

Y,

<

5.2 Stabilization of trees and the quotient map ]?: Y 2

In the proof of Theorem 5.12, we observed that the “bookkeeping” homeomor-
phisms A, j o allowed us to show that the maps gi, k > j send each YV ;o

homeomorphically to ij,j’% for some o € nty; (when k > j). The trees
Tk.j.o, then correspond to a sequence of trees Ay ;o1 (7760’»%) =B,T; inY;. In

order to make a unique choice of tree 7 ;. in 377,’9',0( that is coherent with
the trees Ty j o, we need for the sequence {Br} in m1(Y;) to stabilize. This
stabilization is established in the next lemma.

Lemma 5.13 (Stabilization). Let 1 < j < 00, a € nt, 5, and set ay = gi(a) =
vk for o, e nty ; and v, € T (Y;). If Agja, (7;7%%) = BiTj for B, € m(Y;),
then sequence {Br}i=; is eventually constant.

Proof. Fix j € N and « € nt, ;. Using the notation established in the state-
ment of the lemma, recall that Aj; o, (7} j.«,;) = T; and thus 3; = 1. Moreover,
according to the inductive definition of the trees 7_ _ _ and the summary in
Remark 4.5, we have 1 = 'yk_lﬂk for all £ > j. Suppose, to obtain a contra-
diction, that there exists j < k1 < ko < k3 < --- such that Sy, , # Bg,. Then
L # y, € m(Yj) for all 4 € N. It follows that the reduced word wy,, correspond-
ing to ay, = aj, Y, in the free product 7 (Y<,) terminates in a non-trivial
letter from 7 (Y;).

However, the word w, € ®;m1(Y;) corresponding to o € nty; does not
terminate in a letter from m(Y;). Since some of the projection words wg
contain elements of 71 (Yj), w, must contain some letters from 7 (Y;). However,
w,, only contains finitely many letters from 7 (Y;) and so we may write w, =
wqrlw, where £ € m1(Y;) is the last appearance of a letter from 71 (Y;) in wq
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and w, # 1 has no letters from m;(Y;). Find K large enough so that o and
ag = k(o) have the same number of letters from 7 (Y;) and such that px(n) #
1. Find ¢ € N with k; > K. Then g, («) has correspondlng reduced word
ok; (&' )lox,; (n) where g, (1) is a non-trivial word in m;(Y<g,) with no letters
from 71 (Y;). This contradicts the fact that oy, ends in a letter from m(Y;). O

Definition 5.14. Fix 1 < j < o0, o € nt, j, ai, and G, as in Lemma 5.13.

We define the subspace 7o, j o of yx,m to be the tree Axi,j,a(ﬁa T;) where
Ba € m1(Y;) is the eventual value of the sequence {f}.

Let Z be the quotient space of Y where each subspace T jo is collapsed
to a point. Let f Y — Z be the quotient map and zg = f(ﬂo) Since Y is
path connected and locally path connected so is Z. We characterize f on the
subspaces of ¥ in the same way that we did for fk Many of the proofs are
diagram chases similar to those earlier and so we will omit some details.

Definition 5.15. For each j € Nand a € nt. ;, set Dy j o = f(y,”a) and let
f, i y, g.a = Dy jo denote the restricted quotient map of f

Proposition 5.16. Fiz j € N and a € nt. ; and suppose Ay j o(To j.a) = BT
for Bo € m1(Y;). Then there is a canonical homeomorphism Ay jo : Do j o —
Dj 3, that makes the following square commute.

~ Ao jo o~
Vorjo =]

f;o,j,aJ/ lfﬁﬁa

Do ja 5 = > Dip,
0,4,
Prop051t10n 5.17. Fir j e N, a € nt 4, and k = j. If op(a) = afy for
o € nty ; and v, € m1(Y;), then ok (T ja) = Tﬁd:%

Proof. Recall from the proof of Theorem 5.12 that the following diagram of
homeomorphisms commutes.

~ A, ~
Y,

Ay),j,aT TAk,j,ak

Voo j,a o Vi, j,a,

Suppose Ay, j a1 (E’j,%) = BT for By € m1(Y;). By Lemma 5.13, there exists
Ba € m1(Y;) and K € N such that 8, = S, and v, = 1 for all k£ > K. Moreover,
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we defined T, j o 50 that Ay jo(To j.a) = BaT;. When k > K, we have

o(Trja) = AEN (A (T j,a))

= kja (ﬂa )
= kja (ﬁkT)
= E,],ak

The cases 1 < k < K follow directly from the case £k = K and the equalities
Tht k(T 1,5,05 ) = Thjar, and Fri1k © Opt1 = Ok - O

Lemma 5.18. For each k € N, we have

U U TL,j,a = Q;l U U TL,j,,B

JjEN aenty ; 1<j<k fenty ;

Proof. The inclusion < follows from Proposition 5.17. Suppose a € ¥\ Ujen U T j,a-

a€nt.,
Since Y is the union of the subspaces JNJIJ’&, we have a € JNJIJ,Q\’FLJ’& for some
j€Nand a € nty, ;. Write o(a) = o}y, for o, € nty ; and i, € SN’ By Propo-
sition 5.17, g maps yf ., homeomorphically onto y,w o and gk(TfJ o) =
Tk.j,or, Thus ok(a) € ykvj,%\nvj,%. It follows that a ¢ o) (7}”]75) for any
1<j<kandpBenty;. O

Theorem 5.19. There is a canonical, continuous bijection ¢ : Z — 20 such
that the following square commutes.

(2%
—

N

oN>%$<>

—
W

Proof. To show that v is well-defined, we must show that ﬁ) o ¢y is constant
on each tree 7o, .o, j €N, @ € nt.. ;. Fixing such j and «, define oy, = gi(e),
and Bk, k > j as in Lemma 5.13. As in the proof of that lemma, set az = a7
for o}, € nty, ; and v, € m1(Y;) so that Tp1 .6(Tet1k O¢k+1) = Tk,k.o, - Recall that

Br+1 = Vi, 18, for all k > j. The conclusion of Lemma 5.13 is that there exists
K > jsuch that 8y = B, for all k > K. Thus, for all £ > K, we have v, = 1 and
thus ap = of, € nty, ;. It follows that 71 » maps Ti41,j,q,,, homeomorphically
onto Tk, j,q, Whenever k > K.

Recall that g5 maps 7 jo homeomorphically onto Tﬁ’j,% for all k. Hence,
for all k > K, o, maps T j o homeomorphically onto 7 q,. Additionally, we
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have fk('ﬁﬂyj’%) = Ckj,al, € Zk. Thus, whenever k + 1 >k > K, we have
Sk+1k(Cht1gaq ) = Skt k(Crttjians:)
= Shrrk(frr1(Tir1,gay,,))

= fk(?k+1,k(7;+1,j7a;+1))

= Je(Thjap)
= Ok
= Ckjay
Representing Y as lgl Y<k and f = linkgx fx, we have

Fooy(Teja) =T ( 1 Tk,j,ak) = {(ckja)k=K},

k=K

which is a coherent sequence and thus represents a point in Z. This verifies
that 1 is well-defined. Since f is a quotient map and f o ¢y is continuous, v
is continuous. Since Zo =f (YO) by definition and ¢y is bijection, f o ¢y is
surjective. It follows that v is surjective. N

Finally, we check that ¢ is injective. It is enough to check that f is constant
on the fibers of fyo¢y. Suppose a # bin Y and fyo ¢y (a) = foo ¢y (b). Write
ar = or(a) = ajcr and by, = o (b) = bj.dy, for a), b}, € nty, ; and ¢y, dy, € ENG Since
a # b and ¢y is injective, there exists K € N such that a # by for all £ > K.
However, fi(ox(a)) = fr(or(b)) for all k > 1 and fi only identifies points in
trees of the form 7y j o. Thus, for all k > K, we have {ox(a), 0x(b)} < 7767% o,
for some j, € N and o), € nty ;. Specifically, we must have aj, = b}, = o) for
k> K.

By Lemma 5.18, we have a € T, and b € T, j: g for some j,j' € N
and o, 8 € nty, ;. For k > K, g, maps T jo and T j2.3 to ’ﬁgjjh%. Thus
j =3 = ji for all k > K. Additionally, we must have gi(a) = o}, vx and
ox(B) = a0k for v, 0, € m(Y;). However, Lemma 5.13 ensures that there
exists M > K such that vy, = §;, =1 for all £ = M. Thus gr(«) = gx(f) for all
k> M. The 1nJect1v1ty of ¢y then gives a = 8. Since a,b both lie in 75, ; o, we

have f(a) = f(b). O

Definition 5.20. For each k € N, let o, : Z — Z;, be the composition o =
Sk o9 so that the following that the following diagram commutes for all k € N.

<k
— 7y,

<>fs

N&*@
‘S
N><—)



The proof of the next proposition follows directly from established construc-
tions.

Proposition 5.21. Fiz je N, aent ;, and k > j. If pr(a) = afyi for af €
nty ;, and v, € m(Y;), then o maps Dy jo homeomorphically onto Dy j.o,
and the following square commutes.

N o~
Voo o = Vi ja,

fN‘T;,j,aJ J{fkv]\ak

Dy j,a —5 Di

.
Ok ENELEON

Lemma 5.22. Fiz j € N, a € nty, ; and suppose that for all k = j, we have
or(a) = afy for o) e nty ; and v, € m1(Y;). Then ¢ maps Do j o homeomor-

. fa —1 ¢ &
phically onto Z N (H,@j Dy jo, % Hiﬂ{fk(oé;c)}).
Proof. Consider the following commutative diagram where the right map is the
restriction of fy.

~ by > s j—1
Vs o ———" %0 0 (Iizy Feuag, x [HZ1 0k}

Fooda Jfo

X .
Detia ——— 200 (I1iz; Drsiog, * 11 {i(01)})

The left map is quotient and the top map is a homeomorphism by Theorem
5.12. The right map in the diagram may be represented as the inverse limit

fo= Liilk>j fk,j,a; of quotient maps. Since both sets of bonding map for this

inverse system are homeomorphisms, it follows that ﬁ) is a quotient map. Since
1 is a bijection by Theorem 5.19, we conclude that the restriction of + in the
diagram is a homeomorphism. U

Recall that the open sets of lpc(éo) are the path components of open sets in
Zo. We will use the fact that ¢y : Y — Ipc(Yp) is a homeomorphism, to prove
the analgous fact for Z.

Theorem 5.23. ¢ : Z — lpc(z)) is a homeomorphism.

Proof. Just as we defined the open sets Uy, j  in }7, define Uy, j.o = )N)k,jya\{aﬂ €
fgk | Bem(Y;)} forall 1 < j <k <ooand a € nty ;. Set Vi jo = fk(lxlhj,a)
even in the case k = o0 and note that Vj ; o is homeomorphic to D; without
its arc-endpoints. Since Uy, ;  is saturated with respect to fk, Vi j,o is open in
Z. Fix j € Nand a € nt,. ;. We will show that ¢(V, ;o) is open in Ipc(Zp).
Consider the open sets

(1) U = }/}0 N (uj,j,gj(a) X Hm;ﬁj ?ém) in ?0,
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()7/:200( s % ey Zm) 10 Zo,

Because f]( idr0;(@)) C V yand g; (Vj j.0;(a)) € U j 0, (a), We have folw)
¥ and go(V) S % .

Note that qb;l(% ) is the disjoint union of the path-connected open sets

).77@1

Us jp, BE Q}l(gj(a)). Because ¢y : Y - lpc(},}o) is a homeomorphism, the
sets YU j,8), B E Qj_l(gj(a)) are the path components of % .

Similarly, ¢ ~!(¥%) is the disjoint union of the open sets V.. j g for all 3 €
g;l(gj (). Thus 7 is the disjoint union of the path connected sets (Vo ;,5),
B e g;l(gj(a)). If there was a path ¢ : I — ¥ with €(0) € ¥(V, ;g,) and
(1) € Y(Vy j5,) for Sy # B1 in g;l(gj(a)), then go ol : I — % would be
a path in % from a point in ¢y Uy j.5,) to a point in ¢y (Us, ;. 5,). However,
this contradicts the previous paragraph. We conclude that the sets (Vo 5 8),
B e Q]fl(gj (c)) are the path components of . In particular, ¥)(Vy j,«) is open
in Ipc(Zo).

Since Vo j o is locally path-connected, the restriction 9 : Vo, j o — 1pc(20)
is continuous. Lemma 5.22 implies that 1 maps V., ; o homeomorphically onto
its image in 20. Therefore, if V' C V., ;o is open, then (V) is open in the
subspace ¥(Vo j.o) of Zo. Since lpc(Zo) has a finer topology than ZO, (V) is
open in the subspace (Vo j,a) of 1pc(ZO) Thus v : Vi jo — lpc(Zo) is an
open embedding. We conclude that the restriction of ¥ on Z\]?(p’l(yo)) is an
open embedding.

To complete the proof that v is a homeomorphism, we fix a € p~!(yo) and
set z = f(a). It is enough to show that ¢ maps basic neighborhoods of z to open
sets in lpc(Zo). A basic neighborhood of « has the form N(«, V') where V is an
open neigborhood of yy in Y. In particular, we may assume there is a J such
that (J;. ;Y; € V and VnYj is an open arc in Y;\X; whenever 1 < j < J. Note
that if N(a, V) meets T, j o, then j > J and it follows that 7. ;o S N(a, V).
Hence, N(a,V) is saturated with respect to f and f(N(a,V)) is a basic open
neighborhood of z in Z. We check that 1(f(N(a, V))) is open in lpc(Zo)

Note that V; = V n Y<; is an open neighborhood of yy in Y<; consist-
ing of a wedge of open arcs. Thus N(os(a),Vy) is an open neighborhood of
0s() in Y< ;. In fact, p<; maps N(o (), Vy) homeomorphically onto V; and
N(o0s(a),Vy) does not meet any of the trees 7;; - in Y<J Thus f] maps

N(os(a), V) homeomorphically onto the open subset f(N (o, (c),Vy)) of Z.
Recall that we originally constructed H; to be the constant homotopy on some

neighborhood of each arc-endpoint of 17] Thus, we may choose the size of the

arcs in V A Y< to be small enough so that §; maps f(N(o,(c),Vy)) homeo-
morphically onto N(g;(«), V). Consider the open sets

(1) % = Yo 0 (N(es(@), Vi) x [y Ver) in Yo,

@) ¥ = Zo 0 (Fo(N(05(0), Vi) X [Ty 1) in Zo.
By our choice of V, we have ]%(62/) C ¥ and §o(¥) € %. Now ¢35 (%) =
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Q;l(N(EJ(OZ)7VJ)) is a disjoint union of open sets of the form N(8,V), 5 €
0, (0s()). Such sets are path connected. Therefore, the sets 1(N(3,V)),
Be le(gJ(a)) are the path components of % .

It follows that 1 ~1(7) = O';l(f(N(QJ(a), V7)) is the disjoint union of path
connected sets of the form f(N(B,V)), 8 € 07" (0s()). Then 7 is the disjoint
union of the path-connected sets ¢(f(N(3,V))), B € 07 (05(a)).

Suppose that there exists a path £: I — ¥ with £(0) € %(f(N(Bo,V))) and
0(1) € Y(f(N(B1,V))) for By # B1 in 07 (0s(cr)). Then Goof : I — % is a path
from a point in N (5o, V) to a point in N (81, V'). However, this is a contradiction
of the fact that N(By, V) and N(B1, V) are distinct path components of % . We
conclude that the sets (f(N(B,V))), 8 € 07" (0s()) are the path components

of ¥. In particular, ¢(f(N(a,V))) is open in Ipc(Zy). O

Corollary 5.24. Suppose W is locally path connected and h : W — Z is a
function. Then the following are equivalent:

(1) h: W — Z is continuous,

(2) poh:W — Zy is continuous,

(3) opoh: W — Zy is continuous for all k € N.

We will also need the following characterization of Ay ;o and Ay j o-

Proposition 5.25. Fiz j € N, a € nt, ;, and suppose that gp(co) = o)yi for
oy, € nty; and y, € T1(Y;). Then Ay jo = Mg jof 00k and Ao jo = Ak jal OO0k
for all but finitely many k.

Proof. We focus on the case k = j where we may write A j o (77“]-’%) = Brd}.
By Lemma 5.13, we have 8y = B, and v = 1 for all but finitely many k. Fix a
sufficiently large k and consider the following cube.

~ ok ~
Vi j,a Yk, j,a,
fk,j,a;c
- A,
f‘JC,j‘a ’“'J’uﬂc
Aw ja Dy ja o ID’%J}O(L
(C6)
A, j,a
~ A, ~
Y; Y; Ao,
Djp. Dj g,

Son
Since A,, = id and §., = id, the bottom face commutes. Commutativity of the
top face is proved in Proposition 5.21. The left face is given in Proposition 5.16.
The right face is given in Proposition 4.9. Commutativity of the back face was
verified in the proof of Theorem 5.12. Since the diagonal maps are surjective,
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the front face commutes. Because A,, = id and d,, = id, the front and back
faces collapse into the desired trlangles O

5.3 A homotopy inverse g for f
In the next theorem, we define a homotopy inverse for f .

Theorem 5.26. The quotient map f : (Y, %) — (Z, z0) has a based homotopy
inverse g : (Z,z0) — (Y, o). In particular, there are homotopies H from idg
togo f and G from idz to f o g that make the following square commute.

?XIL)?

Y

Zx]——Z7
G

Proof. Recall that ﬁ) : f’o — 20 and g : 20 — ffo are homotopy inverses. Alsg,
H :Yy x I - Yj is a based homotopy from idf’o to goo foand G: Zg x I — Zy
is a based homotopy from idj to fo 0Go. Set §=¢ loGyor: Z— Y so that
the left square commutes.

Since ¢y 0§ = goop : Z — )’}0 is continuous and Z is locally path connected,
g is continuous by Corollary 2.19. R

Since Ipc preserves products we have lpc(Yo x I) = lpc(Yy) x I. Define
H:YxI—>Y by H = qSY o Hyo (¢y x id). The same argument used for g
gives the cont1nu1ty of H. Define G:Zx1— Z by G = P~ lo Go o (¢ x id).
Since 1 o G=Goo (¢ x id) is continuous, G is continuous by Corollary 5.24.
Based on the definitions given and the established results for Ho and Go, a
stralghtforward check shows that H is a based homotopy from idg to g o f and
Gisa based homotopy from idz to f 04g.

Since fy o Ho = GO o (fo X zd) (Corollary 4.17), a direct verification from the
formulas gives G o (f x id) = foH. O

Remark 5.27. Recall that gy is the restriction of § = (gx). Note that g is
defined precisely so that the left square in the following diagram commutes. In
particular, ¥(z) = (ox(2)). Commutativity of other parts of the diagram have
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already been established as well.

|

@
N;}%a
©-
=
) ” S

Jo
P
4> 0
ok
It follows that g 0 § = g o o for all k€ N.

We will have need to characterize the behavior of g, H , and G on some
relevant subspaces. We begin with H.

Lemma 5.28. For all] e N andaent7 i, we have H(y,](, x1I)c y,ja

Moreover, if H7 g JJ, g X1 — y, J,a 18 the corresponding restriction ofH
then the following diagram commutes

N Ty ~
ylt,j,a X Ii}:))/,ja

Ay)’]’_’a Xidl l/\y),jya
Y;

Y X[ —
Hj o
Proof. Write gr(o) = o)y, for o) € nty;, and v, € m(Y;). For brevity,
write A = Yy N (szj jk,j,a; X Hf;ll{a%}) We have already established the
following.
(1) gi)y maps y g homeomorphlcally onto A,

(2) HO is given by H,, in each coordinate,

(3) Hyp({af} x I) = {of} and Hy(Vyjar x I) € Yy jay, for all k.
Therefore, if ((ax),t) € A x I, then (2) and (3) give ﬁo((ak) t) = (Hy((ag, 1)) €
A. Thus Ho(A x I) € A. This gives

¢yt o Hy o (py x id)(Vop jo % 1)
¢yt o Ho(A x I

¢y (A)

= Yo

HYyjio x 1)

N

To verify commutativity of the square, we let A ; o/ (E’j,%) = BT, whenk > j
so that 3, is the eventual value of the sequence {8j}r>;. Consider the following
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cube.

~ Hypjo ~
yfﬁ,j,oz x I yf«v]',a
Ok

gkxid Aﬁ J,o

Ao o xid Vi jaq, X I — Yk j.ot,
lc,j‘oL;C
(C7)
Ak,j,a;c
V%I Hjpa Y, Apjor Xid
Am Ay
V%1 7,

Hj g,

Fix k sufficiently large so that 8; = B, and v = 1. For such k, H;g, =
Hj 5, and A,, = id, which makes the bottom face commute. Proposition 5.25
gives the commutativity of the left and right faces commute. The front face
commutes for all k£ > j by the construction of Hi. All of the diagonal maps are
homeomorphisms. Thus the back face commutes. O

We characterize the behavior of § and G in a similar fashion.

Lemma 5.29. For all j € N and a € nt, ;, we have §(Dy j o) S 5)@7]‘,(1 and

G(Dopjio X 1) S Dot -
Proof. Since 1) is bijective, we may show ¢y 0 §(D ja) S ¢y(3~)@,j,a). V\A/'rite
ox(a) = afy, for af, € nty ;, and v, € m(Y;). For brevity, write A = Y5 n
(IMisy Py, x THZ H04}) and B = Zo & (Tis, Py, * T2 UTi(0})}).
We have already established the following:

(1) ¢y is a bijection and ¢y (Vo j.a) = A

(2) ¢ is a bijection and ¥(D. ;) = B

(3) Gr(fr(ay)) = ay, for all k and Gi (D .o, ) = Vi, ja for all k > j.
Note that (3) gives go(B) € A. Thus

J(Ds ja) = By ©Go 0 ¥(Drja) = 93" ©Go (B) € ¢7' (A) = Pz ja

Similarly, the fact that ék({ﬁc(afc)} x I) = a for all k and CNY'k(Dkyj’a;c x I) =
Dy jap, for all k > j gives Go(B x I) € B. Thus G(Dx jo x I) = ¢~ 0 Ggo
(¢ x id)(Dy ju x ) =1p" 20 Go (B x I) € L (B) = Doy r- O

For each j € N and o € nt j, let G ja @ Do ja — )NJAEJ’Q and é”f;,ja :
Dy jo X I = Dy j.o be the corresponding restrictions of § and G.
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Proposition 5.30. For every j € N and o € nt. ;, the following squares
commute.

An,j,a ad Ax‘,j,uxid

Vot jo ——Y Do joo X I ————=Djp, x 1
gr,j,aT ngﬂa C’:“/_ﬁ,j,al lGjﬁa
Dy jo — Djp., Dy jo ———F— Djg,

Awje Awj e

Proof. Write g () = apyy, for aj, € nty, j, and vy, € m1(Y;) and write Ay, j or (Thjiaf ) =
BiT;. Find k sufficiently large so that f, = B and (using Lemma 5.25) such
that A jo = Ak ja; © 0k and Ay j o = Apja; ©0k. We then have that the top

and bottom triangles of the following prism commute.

Al& Aak

N o -
Voo j,a N
90,j,a }/j

s
gk,],ak

9i.Ba

ok
D%,j,a Dk,j,a;c

A‘L,j\ A\a%

Dj g,

Restricting g o o = o © § gives the commutativity of the back face. Since
Ba = Bk, Lemma 4.11 gives the commutativity of the right face. Therefore, the
left face commutes.

The second square in the proposition appears as the bottom face in the

following cube.

~ H‘I,j o a
y&o,j,oz x I y”féajaa
Aﬁ,j;QXid Ao Jre
f“f;,],a
fw,j,axid }~f x I }7’
J Hjpo J
(C8)
Ji.Ba Xid
Depja X 1 — Do jon fiBa
Gowja
A\7,,3‘,04
A, ja Xid
DJ?B@ I Gj,Ba D]7ﬁo¢
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From the proof of Theorem 5.26, we have fo H = go (f x id), which gives the
commutativity of the back face. The front face is a case of the bottom face of
Cube C1 in Section 3.3. The right and left faces follow from Proposition 5.16.
Commutativity of the top face was proved in Lemma 5.28. Since the vertical
maps are surjective, the bottom face commutes. O

5.4 The topological structure of 7

In this section, we give a more detailed topological description of the space Z.
Recall from Section 3.3 the definition of the maximal tree T; in Y; and its
translates S7T;, 8 € m1(Y;).

Definition 5.31. Fix j € N, k € Nu {oo} with j < k and o € nty ;. If
Ak j.o(Ti o) = BT;, we define

(1) Thjo = Ago(BTy),

(2) and set Ty, = UlSjSk Uaentk,j Tk,j,Ow
as subspaces of Yo, (Y if k = ).

Each Ty ;o consists of the maximal tree Ty ;o of fk’jﬂ and ﬁk,@a\%c,j,m
which is the disjoint union of the arcs ey j «.~, 7 € m1(Y;). Therefore, whenever
k < oo, T} is a maximal tree in ?gk. In the case k = o0, it is worth noting that
p~1(yo) € To. Indeed, if a € p~1(yp), find a j such that the reduced word w,
does not end in a letter from 71(Y}). Then « is an arc-endpoint of j}mﬂﬂ)a and
therefore a free endpoint of T ;. Although, T, is not a tree in the usual

sense it will serve as a kind of analogue of a “maximal tree” in Y.
Lemma 5.32. For all ke N, 0,(Ty) = Ty and 711 5(Tre1) = Th.

Proof. Fix a subspace Ty jo of Ty Write gp(e) = ajvyi for o), € nty;
and v, € m(Y;). As previously established, gr maps YV, ;o homeomorphi-
cally onto )7;%]-7%. In particular g maps the arcs in jw]a\fL](, to the arcs
37’9133%\‘)?’@%% and 7o ja t0 Tk jar - Thus 0k(Ts joa) S Tk. The inclusion

ok(Tx) = Ty follows for all k. It follows immediately that 741 x(Tr+1) =
Ter1k(0k+1(To)) = 0k (T ) = Ty O

Lemma 5.33. T, is a uniquely arcwise connected and locally path-connected
subspace of Y.

Proof. Consider distinct points z,y € T,,. Find an arc £ : I — Y from z to
y. For each j € N and a € nt, ;, the set W, ;. = )?%7j7a\(37k7j7a\)?k,j,a) is
open in Uy, jo. Since Uy j o is open in }7, Wi ja is open in Y. We will define
another path n that is path-homotopic to ¢. If ¢ already has image in T, we
take 7 = £. Otherwise, fix j € N and « € nt,, ; and let (a,b) be a component
of (7' (W ja)- If Upapy : I — ./'E,\;,j’a is a loop, then we define 7[[,4) to be the
constant path at £(a) = £(b). If £ is not a loop, then £(a) and £(b) are endpoints
in the tree T jao. Choose a path 1|5 : I — T jo from £(a) to £(b) that
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parameterizes the unique arc between these points. By construction, we have
Im(¢) € T, ¢(0) = z, and (1) = y so it suffices to verify continuity. Note
that we obtain the projection oy on: 1 — f@k from gp ol : I — ffgk by either
making subloops of gy o £ constant and possibly modifying finitely many other
subpaths. Hence, or on: I — Yy is continuous for each k. By Corollary 2.19,
n:1— Y is continuous. N

For later in the proof we go ahead and construct a homotopy H : I? — Y
from ¢ to n. In particular, if (a,b) is a component of £~1(W,, ;.), we define
H so that H([a,b] x I) € X, j.. The only part of the construction of H that
cannot be done arbitrarily is the following: let U be a contractible neighborhood
of £(a) in Xy j o with contraction ¢: U x I — U. If £|f, ) is a loop in U based
at f(a), we define H(s,t) = c(€(s),t). The argument for the continuity of H is
the same as it was for 7.

Lemma 5.32 gives 741,%(Tk41) S T for all k£ € N. Therefore, we may
form the sub-inverse limit iiLnk Ty of trees, which is a subspace of V. It is
well-known that every path component of an inverse limit of trees is uniquely
arcwise connected. Since gp(T.) € Ty for all k, we have ¢y (T) © lim Ty.
Since ¢y continuously injects T, into a uniquely arcwise connected space, we
conclude that T, is uniquely arcwise connected.

Finally, we check that T, is locally path connected. Local path connectiv-
ity is clear at all points in T \p~*(y0). Let a € p~!(yo) and consider a basic
neighborhood N(a,U) n T of « in the subspace topology where U is a neigh-
borhood of yy in Y. We may assume that there is a J € N such that Y; € U for
all j > J and Y; n U is an open arc in Y;\X; when j < J. We will show that
N(a,U) n'Ty, is path connected.

Choose aff € N(a,U) n T, for § € U (U has basepoint yg). Note that
there exists jo € N, v € m(U,y0) N nty, ;,, and possibly trivial § € ffjo N
pj_ol(U N Yj,) such that 5 = v§. We use § to denote a path (1,0) —» (U n
Yj,,yo) representing the homotopy class § and similarly, we use v to denote a
reduced loop representing . In the case that j, < J, we choose v to be a
parameterization of the arc from yo to (1) € U nYj,. Additionally, note that
w, only has letters from m(Y}), 7 > J. Let {; : [ — Y be the standard lift
of v starting at o and let ¢o : I — Y be the standard lift of starting at a-y.
Then ¢; is a path in N(a,U) from a to ay and {3 is a path in N(a,U) from
ay to aff. Moreover, the image of ¢; only meets p~!(Y;) for j > J. Using the
construction in the second paragraph, find paths n; : I — T, ¢ € {1,2} such
that 7; is path-homotopic to ¢; in Y. In particular, let H; : I x [ — Y,ie€ {1,2}
be the path-homotopy from ¢; to n; constructed in the third paragraph.

Because we chose v to be reduced, we have Im(p o Hy) € U. Unique path-
lifting ensures that H; has image in N(«, U) and thus 7, has image in N(«, U)n
T... If jo < J, then § has image in N(«,U)nT... In this case, 1o = €2 and H, is
the constant homotopy, which makes it clear that 7, has image in N (o, U)nTo..
If jo > J, then Im(po Hy) € U and thus Hy has image in N(«, U). Thus 72 also
has image in N(a,U)nT... Since 772 is a path from « to af in N(a,U)nT,
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we conclude that N(«,U) n T, is path connected. O

Definition 5.34. A topological R-tree is a topological space, which is metriz-
able, uniquely arc-wise connected and locally arcwise-connected.

It is known that every topological R-tree may be equipped with an R-tree
metric [11] and that R-trees are contractible [12]

Corollary 5.35. If X; is locally finite for every j € N, then T, is contractible.

Proof. As noted in Remark 3.3, if each X is locally finite, then Y is metrizable.
Thus T, is metrizable. By Lemma 5.33, T,, meets the other conditions of
being a topological R-tree. O

Definition 5.36. Fix k € Nu {0}, j € N with j < k, and « € nty, ;. Identify
f = fx in the case k = o0. Define
(1) Exjo = f&(Tk,joc) whenever jeNand 1 < j <k,

~

(2) and Ey = f(Ty)
as subspaces of Z (Z when k = o0).

Remark 5.37. For each k € N u {00} we have j?k_l(Ek) = Tj. Indeed, if
z € Yei\Tk, then x € Xy j o\ Tk, j,o for some j € N and a € nty ;. This would

~

give f(z) € Ck j.a\{Ck,j,a}, Where Ck j o\{ck, j o} is clearly disjoint from E;. The
same reasoning gives f 1(E,) = T...

When k < o0, Ey, is a tree such that Zj consists of Ej with the space Cy ;o
attached at ci ;.o € Ep.

Lemma 5.38. E., is a uniquely arcwise connected and locally path-connected

subspace of Z such that
Z=E,u U U Cr -

jeN aenty, ;

Moreover, for each j € N and o € nt. j, we have
Z = (Co,j,ar Cn,j,0) V (Z\Cos g, Cor j,0)-

Proof. For the moment, fix j € N and o € nt. ;. Since /'E,Q’j’a = f’l(Cﬁ,\;,j’a)
is closed in Y, Cy j o is closed in Z. Additionally, recall from the start of the
proof of Lemma 5.33 that W ;. = )E%,j@\(f/k,j’a\)?k,j,a) is open in Y. Since

Wy ja = ffl(C%yj,a\{c%yj@}), the set Cy j.a\{C,j,o} is Open in Z. This is
enough to give the wedge-sum factorization

Z = (COO,j,OmCOO,j,Oé) \% (Z\C:C,j,avcoc,j,a)-

Since the above paragraph holds for all pairs (j, ) and

E, = Z\ (U U Cm,j,a\{cxi,j,a}> s

jeNaenty ;
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it follows that E. is closed in Z. Recall from Remark 5.37 that f “HE,) =Ty,
and so the restricted map ]?|T@ : T, — E_ is a quotient map. Since T, is path
connected and locally path connected by Lemma 5.33, so is its quotient space
E.. Additionally, Lemma 5.33 gives that T, is uniquely arcwise connected.
Every fiber of f|t_, : To, — Ey is either a point or a closed sub-tree of the form
Too,j,o- 1t follows easily that every point in E,, separates E,, into two disjoint,
open components. Therefore, E, is uniquely arcwise connected. O

The second statement of Lemma 5.38 implies that for each j € N and « €
nt., ;, there is a retraction pt; o : Z — Co j o, that collapses Z\Co, j o t0 Co j.a-
Additionally, there is a retraction p : Z — E,;, which collapses each Cy j  to
Co,j,a

Corollary 5.39. The spaces Ey, and Cy. j o, j € N, a € nt, ; are retracts of
Z.

Corollary 5.40. If D is a Peano continuum in T.. or E,, then D is a dendrite.

Theorem 5.41. The restricted maps f|TL : Ty > Eyp and §lr, : Ew » T
are based homotopy inverses.

Proof. Since Ty, and E contain the basepoints of Y and Z respectively, the
corresponding restrictions of H and G will verify the desired homotopy equiva-
lence if we show that (E,) € T, H(T, x I) T, and GE, xI) S E,.
Fix j e Nand o € nt gt Recall that each of g, H and G are determined by
their restrictions go. j o, Hﬁ .o, and G7 .- Therefore, it suffices to check that
gw,j a(Ef ]a) C Ty jas HT,] a( o,g,a X I) € Tyja and G7 ]a(Ex,ga X
I) € Ey jo. In all cases, we use the fact that Ay ; o(To ja) = BT, and
Aeja(Bx ja) = Ejg,-

From the left square in Proposition 5.30, we have gy j.o = A;j] o © 3.8, ©
A, j.o- Recall from Section 3.3 that we have g; g, (E;g,) € BoT;. If follows
that

JojoBrja) = AL L0058, 0 A0 (B jia)
= A }] a © 95,84 (EjaBot)
= A;,j,a(BaTj)

T ja

The same argument using the square in Lemma 5.28 for H and the right square
in Proposition 5.30 for G gives the other inclusions. O

Combining the previous theorem with Corollary 5.35, we have the following.

Corollary 5.42. If X; is locally finite for every j, then E. is contractible.

Even when X is not locally finite, every Peano continuum in E.; is a den-
drite and therefore contractible. Nevertheless, the author anticipates that E,.
is contractible even when X is not locally finite. However, this requires a char-
acterization of contractible, uniquely arcwise connected, and locally arcwise
connected spaces, which apparently does not exist in the current literature.
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5.5 Shrinking adjunction spaces in Z

Definition 5.43. Let S be {1,2,... M} or N. Let D be a path-connected space,
{d;}ies be a sequence (of not necessarily distinct points) in D and {(4;, a;)}ies
be a corresponding sequence of based, connected CW-complexes. The shrinking
adjunction space with core D and attachment spaces {(A;,a;)}ics is the space
X = X u[[,cqg Ai/~ where d; ~ a; for each i € S. We give X the following
topology: a set U € X is open if and only if

(1) DnU is open in D,

(2) A;nUisopenin A; forallie S,

(3) whenever S = N and i1 < iy < i3 < --- such that {d;  }men converges to

a point de D n U, we have A; < U for all but finitely many m € N.

Tm —

Note that the case in Definition 5.43 where S is finite is simply to allow
for an ordinary finite adjunction space to be considered as a degenerate case of
a shrinking adjunction space. Note that D and all attachment spaces A; are
retracts of X as defined above. Let u; : X — A;, i € N be the retraction that
collapses D and A; for j # i to a;. The following is one of the main results of

[3].

Theorem 5.44. Let n = 2 and X be a shrinking adjunction space as described
in Definition 5.48 where D is a Peano continuum with basepoint dy. Then
canonical homomorphism YTx : 7, (X, do) = | [;en ™n(Aisai), Tx([£]) = ([u; o
£]) is a split epimorphism. Moreover, if D is a dendrite and A; is an (n — 1)-
connected CW-complex for all i € N, then Tx s an isomorphism.

In the next lemma we identify the relevant shrinking adjunction spaces
within Z.

Lemma 5.45. Let D € E,, be a dendrite and {(j;, ;) }ien be a sequence of
distinct pairs where j; € N, oy € nty. j,, and ¢ j,.a; € D. Then {j;}ien — 0
and P = D v UieN Crj, s 15 @ shrinking adjunction space with core D and
attachment spaces Co. j; o, -

Proof. To simplify our notation, we write A; for C j, ;-

First, we prove that {j; }ien — 0. If {j; }sen = 00, then there exists J € N and
i1 < iy < i3 < --- such that j; = J and that a;,, # a; , whenever m # m'.
Since {cx, J,a;,, JmeN i a sequence in the compact set D, we may replace {i,,} by
a subsequence so that {¢», 4, }men — 2 for some z € D. Since all pairs (J, as,, )
are distinct and Z\f(p_l(yo)) is the disjoint union of the open sets f(l/{nj,a),
we must have z = J?(Oz) for some a € p~1(yo). Since 9Cr,t0;,,) S /'E,V,J,aim,
we have ap,, = §(cx,ja;,) € /'\N,’%Jal where {am}men — §(2) = a. Thus
{p(@m)}men — Yo in Y where p(a,,) € X  for all m. This is a contradiction
since X is closed in Y and yo ¢ X .

With {j;}ien — o0 established, note that the subspace P of Z has the under-
lying set of the desired shrinking adjunction space. Since D and all C,, j . are
retracts of Z, Conditions (1) and (2) in Definition 5.43 hold; it suffices to check
Condition (3). Recall that the attachment points in D are d;, = ¢4

CsJim Qi *
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Suppose U is an open set in Z and that i1 < iy < i3 < --- is such that
{d;, }men — d for d € U. Suppose, to obtain a contradiction, that there exist
my < mg <mg < --- such that A; is not contained in U. By replacing {d;,, }
with the corresponding subsequence, we may assume that A; & U for all m.
Then there exists a,, € A;, \U for all m € N. Since {d; , }men — d, d;,, € U for
all but finitely many m. Thus we may assume a,, # d;, , i.e. a, € 4;, \{d;,, }.

Using our characterization of the structure of Z again, we must have d €
D n f(p~Y(z0)). Since f is bijective on p~!(zo) (with inverse §), there is a
unique 8 = §(d) € p~(zo) € Y with f(8) = d. Choose S, € Xy i i, with

f(ﬁm) = a,. For each m, we have §,, = o, Ym € X, for ~,, € Y

Jim *

di,,)} = B in Y.
The definition of § ensures that g(d;, ) € yoo,jlm i, - Thus g(d;,,) = @, 0m for

Lo Jigm s Qi

Since {d;,, }men = {Cxji,, o, fmen = d in Z, we have {g(

Om € Y . In summary, {alm Om }tmen — B in Y for 8, € Y

Slnce f(8) = d e U, f~1(U) is an open neighborhood of Bin Y. Find a
basic open neighborhood N(3,V) € ]‘LI(U) where V' is an open neighborhood
of yo in Y. We may assume that there is a J such that Y; € V for all j > J.
Since {j;,, }men — o0, we may find M such that j;, > J for all m > M.
Additionally, since {a;, dm}men — B, we may choose M large enough so that
@i, 0m € N(B,V) forallm > M. Fix m > M. A path representing d,,, has image
inYj, <V and thus a;,, € N(B,V). It follows that N(3,V) = N(«;,,, V). We

have ~; € %im and j; = J. Thus B, = a4, Vi, € N(oy,,,V) = N(5,V) €
ffl(U). This gives a,, = f(ﬁm) € U; a contradiction. O

We refer to a subspace of Z of the form P = D u |, Cx j;.a, as described
in Lemma 5.45 as a D-subcomplex of Z. Note that every D-subcomplex of Z
is a retract of Z. Indeed, since E.. is uniquely arcwise connected and locally
arcwise connected, there is a canonical retraction E,, — D and this can easily
be extended to a retract of Z using the second statement of Lemma 5.38.

Corollary 5.46. Fvery Peano continuum in Z containing zg is a subset of a
D-subcomplex of Z for some dendrite D € E,.

Proof. Let P € Z be a Peano continuum containing zy. Then D = P n E, is
a dendrite. Since the sets Cy jo\{Cx,jo} are open and disjoint in Z (ranging
over all pairs (j,a)), P can meet Cy j o\{Cx j.o} for at most countably many
pairs (j,a). Otherwise, the separability of P would be violated. Let (j;, ;)
be an enumeration of the pairs (j, &) for which P meets C», j o\{cx,j.o}. If the
sequence {(j;, a;)}; is finite, we define P to be the finite union P = DulJ; C j.a
(this is trivially a shrinking adjunction space) and it is clear that P € P. We
now assume that {(j;, «;)} is indexed by N. Since P is path connected, we must
have ¢y j, o, € D for all i € N. By Lemma 545, P = D U (J;enCor,jira; IS @
D-subcomplex of Z. Clearly, P € P. O

Let ®6 be the set of D-subcomplexes P in Z such that zy € P. Subset
inclusion defines a partial ordering of ®&. Whenever P; € Ps in D6, P; is
a retract of P, and so we have a canonical injective homomorphism ¢p, p, :
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Tn(P1, 20) = Tn(P2,20). These maps form a directed system of injective homo-
morphism for which we have the direct limit lim,__ (P, 20). Moreover, since
each P € DG is a retract of Z, the homomorphism op : 7,(P, z0) — 7 (Z, 20)

induced by inclusion P — Z is injective.

Theorem 5.47. For all n = 2, inclusion maps P — Z, P € D6 induce a

canonical isomorphism o : h_rr)l73696 (P, 20) = T (Z, 20).

Proof. Injectivity of each pp ensures that ¢ is injective. Surjectivity is a direct
consequence of Corollary 5.46. O

Unfortunately, the isomorphism in Theorem 5.47 is impractical for under-
standing m,(Z) in terms of the homotopy groups of the spaces X;. We provide
another approach in the next section.

6 Main Results

6.1 The homomorphism ¥ and its image

The previous section implies that every map ¢ : I — Z will have image in
some D-subcomplex of Z. Hence ¢ can meet countably many of the space
Cooj.a\{Cw j.o}. Here, we show that an even stronger statement holds: we can
deform £ so that for any fixed j € N, ¢ will only meet Co, ;.o \{Cux jo} for finitely
many pairs (j, @).

Lemma 6.1. Every map ¢ : (I™,0I") — (Z,zy) is homotopic rel. I™ to a
map £ . (I",0I™) — (Z,z9) such that for every j € N, the set of connected

components of (¢) (U, Corva Mo .a}) s finite.

Proof. Fix je Nand let ¢ : (I",0I™) — (Z, z9) be a map. Since fO§ ~ idy, we

~

have ¢/ = fogol ~/{. Let Kk =goland k =pok: (I, dI") = (Y,yo)-

(I™,oIm)

S
Y

It suffices to verify the lemma for ¢/. We will use ¢/ to define a new map
" (I, 01I™) — (Z,20). First, we define ¢” to agree with ¢ on the closed set
(&) H(Ex).

Let U be a contractible neighborhood of ¢; in C; and let U; o = )\;}j,a(U) be
the corresponding neighborhood of ¢ j o in Cx jo. Let Kjo : Ujo x I — Ujq
be a based contraction, i.e. a based homotopy from the identity of U;, to
the constant map at cy ;. Fixing o € nt, ;, consider the open set V,, =
() Cor ja\Cr ja) in (0,1)". If W is a connected component of V,, then
V(OW) = ¢y ja- Now, if £/(W) € Uj,, we define £” to be constant on W,
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that is, ¢”(W) = ¢y j.a. On the other hand if ¢/(W) & U, , we define ¢”
to agree with ¢ on W. Define a homotopy L : I" x I — Z as follows: L is
the constant homotopy on (#)~*(E..) and on any component W of V,, where
V(W) € Ujq. If Wis a component of V,, where ¢/(W) € Uj ,, we define L so
that Llwxr(w,t) = Kj o(¢'(w),t) for we W, te I

For each k € N, it is straightforward to check that the projection oy o L :
I" x I — Zj, is continuous. By Corollary 5.24, L : I" x I — Z is continuous.
Thus L is a homotopy from ¢ to ¢”.

To check that ¢ has the desired property, suppose there is a j € N, distinct
a1, 0, a3, -+ € nty, 5, and points x; € I™ such that £/(z;) € Cx j 0, \{Cx j,0u }-
By our construction of £, we must have ¢”(z;) = £'(z;) = f o &(z;) € Conj i
Thus K(z;) € /"?x,j,ai inY. Replacing {z;} with a subsequence, we may assume
{z;} — z in I". The subsets f(Uy o), @ € b, ; of Z are all disjoint and
open in Z and the same is true of the subsets C.. j o\{csx j o} This observation
with the fact that the «; are all distinct, gives f o R(x) € N(pfl(yo)). Since
R(x) € p~L(yo), we have k(z) = yo € Y. In summary, we have x(z;) — yo in
Y where z; € X;. However, this is a contradiction since j is fixed, X; is closed
inY, and yo ¢ X;. We conclude that (¢/)7*(C, j.o\{Csx,ja}) is non-empty for
finitely many a and has finitely many components when it is non-empty. O

Recall that p; o : Z — Cs j,o denotes the canonical retraction.

Theorem 6.2. Let n > 2. There is a canonical group homomorphism

U m,(Z,20) = H (—D Tn(Cop j,a)

jeN aent . J

gwen by W([{]) = ([p),a 0 €])-

Proof. 1t is clear that ¥ well-defined with codomain [ [;cy [ aent,, ; T (Cop joar)-

Lemma 6.1 ensures that ¥ has image in the subgroup [ [ ey @oent,, ;T (Cojar)-
’ O

Next we characterize the image of ¥ using the topology on 71 (Y").

Theorem 6.3. If [{; ] € my(Co ja) for j € N and o € nt, j, then ([¢;q]) €
[Tien (—Daem‘rj Tn(Co,j,a) i in the image of W if and only if the closure of
Ujenta € nt ;| [65.0] # 0} in m(Y) is compact.

Proof. Suppose t : (I",0I™) — (Z,2) and let tj o = pj o ot. Using the based

homotopy inverses f and §, we may assume that ¢t = go & for 5 : (I",0I") —
(}N/, ¥o). Note that f(oz) lies on the unique arc in E,, from 2o to ¢4, j . Therefore,
if [tj.o] # 0, we must have f(@) € Im(t). Since f is bijective on p~(yo) (with
inverse §) we must have o € Im (K). Thus (Jjen{a € mtoej | [tj0] # 1} S
Im (R) np 1(yo) = Im(R) n 71 (Y). Since Im(R) is compact and 71(Y") is closed
in Y, Im (%) n m(Y) is compact as a subspace of 71(Y). It follows that the
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closure of [ J;on{a € b j | [tj,0] # 0} in m1(Y) is contained in Im (K) n 71 (Y)
and therefore compact.

For the converse, suppose (a; o) is an element of the codomain such that the
closure of A = | J;cy{a € nt j | aj o # 0} in m1(Y) is compact. If A is finite,
then standard methods may be used to construct a map t: (I™,0I") — (Z, z9)
such that ¥([t]) = (aj«). From now on, we assume that A is infinite with

compact closure. Let B = Au | Jcniar; € Y | ajo # 1}. We have extended A

~

to B so that ¢y jo € f(B) whenever a; o # 0.

First, we claim that B is compact using a the following fact: for a sequence
{ai}ien in A with a; € nt.. j,, we have {a;};en — « in Y (and thus A) if and
only if {7, }iew = . The proof of this argument follows the same reasoning
used in the proof of Lemma 5.45 so we omit it. To prove compactness, suppose
%’ is an open cover of B and let % < %' be a finite subset that covers A.
It is enough to show that there are only finitely many points of the form ar;
not in |J% . To obtain a contradiction, suppose «;7j, ¢ J% for an infinite
sequence {(ji, ;) }ien of distinet pairs. However, since A is compact, {a;}ien
has a convergent subsequence {a; }meny — o where a € A. Thus G, Tjy =
inY. However, o € |J% and so «a;,7j, € |J% for sufficiently large m; a
contradiction.

With the compactness of B established, let D be the union of all arcs in
T.. from 7, the points of B. Clearly, D is uniquely arcwise connected. It is
straightforward to show that D is compact using the compactness of B. It
follows that D and D = f(D) are dendrites. By our construction of B, we have
Cojia; € D for all i € N. Thus, by Lemma 5.45, P = D U (J;cnCajia; 1S &
D-subcomplex of Z.

Let ¢ : P — Z be the inclusion and YTp : m,(P,20) — [[;eny ™n(Ai) be
the canonical homomorphism from Theorem 5.44 induced by the retractions
P — A Let 2 [[; m0(Cx jios) = [ jen C"Baemm Tn(Cs,j,a) be the inclusion
map induced by the projections [[, 7, (Cx jia;) = Tn(Coxj;,a;) (and trivial
maps in the other coordinates). It is straightforward to check that the following
diagram commutes.

T
T (P> ZO) —7’> HiEN Tn (CZ7’ji7ai)

W”(Z) T> HjeN C—Baent‘r,j ﬂ—n(c@’j»a)

Since Tp is surjective by Theorem 5.44, we have Tp([{]) = (aj,.a,): for some
[4] € (P, 20). Now U([r0ol]) = (aja)je for [tol] € m,(Z). This completes
the proof that ¥ is surjective. O

Problem 6.4. According to Theorem 5.44, the homomorphism Yp always has
a section. However, it is not clear to the author if these can be chosen in a
coherent way. Does VU : 7, (Z) — Im(¥) always split?
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6.2 The injectivity of ¥ when each )N(j is (n — 1)-connected

In this section, we identify a case where W is injective. In particular, we fix
n = 2 and suppose that 7,,(Y;) = 0 for 2 < m < n — 1 or, equivalently, that
Yj is (n — 1)-connected. We will directly use the injectivity result in Theorem
5.44.

Theorem 6.5. If }7] is (n — 1)-connected for all j € N, then the canonical

homomorphism
U:m,(Z) > H P m(Crja)
jeN aenty, ;
18 injective.
Proof. First, note that since }73 is (n—1)-connected and Cy, j o = ?}/BQT] ~ }N/},
it follows that C. ;o is (n — 1)-connected.

Let £ : (I",0I™) — (Z,z9) be a map such that ¥([{]) = 0. Since Im(¢) is
a Peano continuum in Z, by Corollary 5.46, we may find a D-subcomplex P =
DulJ;en Cv.ji s containing Im(¢). In particular, the coreis D = Im(¢)nE,, and
the attachment spaces are Cy. j, o, for a (possibly finite) non-repeating sequence
of pairs (j;, ;). By assumption the projection ¢; o = pjqo o0t : (I",0I") —
(Con,j,as Con,j,a) is null-homotopic in Co, ;.o for all pairs (j,«). In particular, for
each i € N, ¢}, , is null-homotopic in Cx j, a,-

Let Tp : 7Tn(73 20) = | Lien ™n(Co i i » €2 jis; ) e the canonical homomor-
phism induced by the retractions P — Cy j, .o, According to Theorem 5.44,
Tp is an isomorphism. Let ¢ : P — Z be the inclusion map. As in the proof
of Theorem 6.3, let = be canonical the inclusion homomorphism so that the
following square commutes.

T
Tn(P) —P;> l_[ieN 7T7L(C‘7J7ji7ai)

mn(Z) — [Tjen @aent‘nj Tn(Conj,a)

Viewing ¢ as a map I" — P with to ¢ = ¢, we have E o Yp([{]) = ¥([{]) =
by assumption. Since = and Y p are injective, [¢{] =0 in 7, (P). Thus [{] = 0
T (Z).

s

6.3 The homomorphism © and a proof of Theorem 1.1
Finally, we put everything together to prove the main result of this paper.

Proof of Theorem 1.1. For each 1 < j < k and « € nt; 4, there is a canonical

retraction by j o : Y<k — )}kj - lemg j €N, aent, ;, and letting gx(a) =
a7, for o, € nty ;, the Ipc-coreflection of the inverse limit mkzj bk j.a) 8ives

a canonical retraction by ;o 1 Y — Vo io. In short, b, , maps points outside
s s » Do,g,
of YV j,o to the “nearest” arc-endpoint of V. j.q-
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Recall that we are still identifying )Afj as a subspace of SN/J and AN’OO,J»’Q as a
subspace of 377 .- The quotient maps ¢; : ¥Y; — X; collapsing the attached
arc form the quotient map ¢ : ¥ — X, which mduces the homotopy equivalence
C Y — X. Since ( collapses the arcs of each y, .o and maps X, j, home-
omorphlcally onto its 1rnage we will also write X, o to denote the subspace
C(J}OOJ o) of X. Let Crjo : Vo jia — Xy jo be the corresponding restriction

of C. There is a canonical homeomorphism Ty jo : Xejo — X; such that the
following square commutes.

yfja%Y—j

X

X ja T

Fn,j,a J

In the same way, we constructed the maps b j ., We may construct canonical
maps o j,a X Xx) .o such that the following square commutes.

}"/-; /)Jaj‘)’
El Jcma
?Nfa, — X,

Note that both of the above squares are diagrams of based maps, Although, we
identify them in our notation, the basepoint of X ;o is a7; if viewed as a sub-
space of Y and E (o) if viewed as a subspace of X. Putting it all together, we con-
sider the following diagram where all products are indexed over pairs (4, «) with
j € Nand o €nty ;. For example, [ [ m,(Y;) denotes | [;c [Taens., ; ™ (Y5)-

Tn(Z) —2= [ 7n(Co o) [T 70 (Dot jar)

# Tn(f‘f,,j,m)#

(YY) 4t 7 (V) ’ [T (Vr ja) —— [T ma(Y)
¢

C#J Cx H(En,j,a)#l JH Cin
(X

™ )Wﬂmm
S}

In the above diagram,
e R is the product of the isomorphisms induced by the retractions D, j o —
Cux.j,o that collapse the attached arcs to ¢y j q-
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b is induced by the maps (bx j.a)# : (YY) > wn(ﬁw’j,a),
e a is induced by the maps (ao ja)# : Tn(X) = ﬁn(fx7j,a),
o A=11(pjoN0ja)s
[ ]
[ ]

I'=11(gj © T j.a)#;
and@=l—‘oaoq;&1.

The bottom left square commutes by the definition of 5 . Commutativity of the
other two bottom squares follows from the two squares given earlier in the proof.
Because ¥ is induced by the retractions Z — C. j o, a direct check shows the
top square commutes. Although the upper square depends on the choice of the
trees T}, the lower squares do not. Previous results ensure that all maps except
for ¥, a, and b are isomorphisms.

Recall from Theorem 6.2 that ¥ has image in [ [;ey @aent, , ™ (Cor ja)- 1t
follows from the diagram that © has image in [ [y @aent,, , ™ (X;). Finally,
recall that there are canonical bijections nt.. ; — m1(Y)/m1(Y;) — m(X)/m1(X;)
(the first is the restriction of the projection m1(Y) — m1(Y)/m1(Y;) and the sec-
ond is induced by ¢). Thus we may canonically identify the indexing sets nt, ;
and m1(X)/m1(X;). This gives the desired homomorphism O as described in the
statement of Theorem 1.1. N

Lastly, when X; is (n — 1)-connected for all j € N'Y} is (n — 1)-connected for
all j € N. The homomorphism ¥ is injective by Theorem 6.5. It follows from
the diagram that b and a are injective. We conclude that © is injective. O

Remark 6.6 (The image of ©). Combining Theorem 6.3 with the diagram from
the proof of Theorem 1.1, a direct proof gives the following characterization of
Im(©): Letting H; = m(X;), we denote elements of m(X)/H; by SH;. An
element (¢; 5m;) € [ 1; D, (x)/n, ™ (X;) lies in Im(O) if and only if the closure
of UjeniB € m(X) | 4j5n, # 0} in 71 (X) (with the whisker topology) is
compact.

With Theorem 1.1 established, we identifying an alternative description of
T, (X) using the n-shape homotopy group #,(X) = lim, m,(X<k).

Corollary 6.7. Suppose )~(j is (n — 1) connected for all j € N. Then the
canonical homomorphism ® : m,(X) — 7,(X), ®([€]) = ([rx 0 £]) to the n-th
shape homotopy group is injective.

Proof. The homotopy equivalence ¢ : Y — X induces an isomorphism on m,
and 7. Since @ is natural, it suffices to prove the result for Y. o
Suppose 0 # [{] € m,(Y). Let £: S™ — Y be the lift of £ and ¢’ = fol. Since
f and p induce isomorphisms on m,, we have 0 # [¢'] € m,(Z). By Theorem
2.2, there exists j € N and «a € nt.. ; such that 0 # [p;.4 0 '] € T,(Cop j,a)-
Now o, maps C.. j o homeomorphically onto C; ;. for some o’ € nt; ; and so
0 # [oj0l'] € m,(Cop jar)- Since C, j o is a retract of Z;, we have 0 # [0 0] €
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Wn(Zj).

(I, oIm) ——

/ o J

Thus 0 # [o;00'] = [0 ofol] = [fj 00, of]. Since E is a homotopy equivalence,

0 # [g; o] in m,(Y<;). Since pg; : Y<; — Y induces an isomorphism on 7,

we have 0 # [pgj00j0l] = [rjopol] =[rjof]in m,(Y;). We conclude that
there exists j € N such that [r; o £] # 0. Therefore, ®([¢]) # 0. O

Remark 6.8. Recall from the introduction that standard homotopy theory

gives m,(X<k) = @i ®771(Xsk)/771(xj)7r”(Xj) when each X, is (n — 1)-
connected. Under this hypothesis, the previous corollary provides a canonical
injection of m,(X) into

{im < s> S Wn(Xj)> :

keN \1sj<k m(X<p)/m(X;)

We point out that this inverse limit does not simply give the product over k
because the bonding maps are not product-projections. Rather, the bonding
maps correspond to the induced homomorphisms (gk+1,%)% : Tn(X<k+1) —

Tn(X<k)-

6.4 The aspherical case

A path-connected space X is aspherical if 7, (X) = 0 for all n > 2. If X admits

a generalized universal covering X , then X has trivial homotopy groups. If X
is an aspherical CW-complex, then X is contractible.

Lemma 6.9. If Y} is aspherical for every j € N, then E.. is a deformation
retract of Z. In particular, p: Z — E., is homotopic to idy.

Proof. Suppose Y is aspherical for every j € N. Then each universal covering
space Y; is contractible. For all j € N and o € nt,, ;, we have

Coogia = Vorjua/ T o = Yi/BaTy = Y5,

Thus C j o is contractible. For each 8 € m1(Y;), fix a based contraction K g :
Cjp x I — Cjg,ie. abased homotopy from idc; , to the constant map at c; 5.
Define contractions Ly : Z x I — Zj, so that Li(z,t) = z for (z,t) € E; x I and
so that the restriction of Ly to the subcomplex Cy j o x I is a map Ci jo x I —
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Ck.j,o making the following square commute when Ay ; o(Tk,j.o) = B8T;.

Ly
Crja X I ——Cpja

Ak,j,a del \L)\k’j’a

CipxI——C,
3B K5 9B

The maps L;, are clearly well-defined and since Z; x I is a CW-complex, Ly is
continuous. The same inductive argument used to construct the maps Gk, j,a CAn
be used to show that Ly o (Sp41,5 X id) = sk+1 ko Lii1. Let LO ZO x I — Zo
be the restriction of the inverse limit map L= lim Ly : ZxI— 2.

Define L : Z x I — Z as follows: L(z,t) = z for (z,t) € E, x I. For each
j € Nand o € nt,, ;, we define the restriction of L to the subspace Cy. ;o x I to
be the based contraction Cy, j o X I — Cy j,o Which makes the following square
commute.

L
Cojja X I —Cx ja

A«L,jyaxidl J(A-f”j)a

Cip. xI——C;
JsBa K;po 9Ba

Clearly L is well-defined, L(z,0) = z and L(z,1) = u(z). We have constructed
L so that ox o L = Ly o (0} x id) for all k € N (details required to verify this
are identical to previous arguments, e.g. the construction of gi). Since Z x I is

locally path connected and the projections oo L are continuous, L is continuous
by Corollary 5.24. O

Proof of Theorem 1.4. Suppose each X; is aspherical. Then each Y; is aspheri-
cal. We have the following sequence of maps.

)?Cf/fZ#EwgleTm

All of these maps except for p are always homotopy equivalences. Since each
Y; is aspherical, Lemma 6.9 implies that p is a homotopy equivalence. Since
every uniquely arcwise connected Hausdorff space is aspherical, T, is aspherical.
Thus X is aspherical. Moreover, if each X; is locally finite, Corollary 5.35
implies that T, is contractible. Hence, in this case, the sequence gives that X
is contractible. O
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