The quasitopological fundamental group and the first shape map

Jeremy Brazas

28th Summer Conference on Topology and Its Applications North Bay, Ontario, Canada

July 26, 2013

Jeremy Brazas The quasitopological fundamental group and the first shape

(日)

Introduction

Joint with Paul Fabel.

- ▶ J. Brazas, P. Fabel, *Thick Spanier groups and the first shape map*, To appear in Rocky Mountain J. Math.
- ► J. Brazas, P. Fabel, *On fundamental groups with the quotient topology*, To appear in J. Homotopy and Related Structures. 2013.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

Joint with Paul Fabel.

- J. Brazas, P. Fabel, Thick Spanier groups and the first shape map, To appear in Rocky Mountain J. Math.
- J. Brazas, P. Fabel, On fundamental groups with the quotient topology, To appear in J. Homotopy and Related Structures. 2013.

・ロ・ ・ 四・ ・ 回・ ・ 回・

The fundamental group

The fundamental group $\pi_1(X, x_0)$ of a Peano continuum $X, x_0 \in X$ is either

finitely presented (when X has a universal covering)

or uncountable (when X does not have a universal covering)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The fundamental group

The fundamental group $\pi_1(X, x_0)$ of a Peano continuum $X, x_0 \in X$ is either

finitely presented (when X has a universal covering)

or uncountable (when X does not have a universal covering)

Motivation/Application:

Distinguish homotopy types

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The fundamental group

The fundamental group $\pi_1(X, x_0)$ of a Peano continuum $X, x_0 \in X$ is either

finitely presented (when X has a universal covering)

or uncountable (when X does not have a universal covering)

Motivation/Application:

- Distinguish homotopy types
- Provides new direction for combinatorial theory of infinitely generated groups, i.e. slender/n-slender/n-cotorsion free groups (Eda, Fischer)

・ロ・ ・ 四・ ・ 回・ ・ 回・

The fundamental group

The fundamental group $\pi_1(X, x_0)$ of a Peano continuum $X, x_0 \in X$ is either

finitely presented (when X has a universal covering)

or uncountable (when X does not have a universal covering)

Motivation/Application:

- Distinguish homotopy types
- Provides new direction for combinatorial theory of infinitely generated groups, i.e. slender/n-slender/n-cotorsion free groups (Eda, Fischer)
- Natural topologies on homotopical invariants provide (wild) geometric models for objects in topological algebra.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

The Hawaiian earring $\mathbb H$

Jeremy Brazas The quasitopological fundamental group and the first shape

The Hawaiian earring $\mathbb H$

The homomorphisms $\pi_1(\mathbb{H}, 0) \to \pi_1(\bigvee_{i=1}^n S^1, 0) = F(x_1, ..., x_n)$ induce a canonical homomorphism

$$\Psi: \pi_1(\mathbb{H}, 0) \to \varprojlim_n F(x_1, ..., x_n)$$

<ロ> <同> <同> < 同> < 同> < 同> <

э

The Hawaiian earring $\mathbb H$

The homomorphisms $\pi_1(\mathbb{H}, 0) \to \pi_1(\bigvee_{i=1}^n S^1, 0) = F(x_1, ..., x_n)$ induce a canonical homomorphism

$$\Psi: \pi_1(\mathbb{H}, 0) \to \varprojlim_n F(x_1, ..., x_n)$$

Theorem (Griffiths, Morgan, Morrison): ker $\Psi = 1$ so Ψ is injective.

ヘロト 人間 ト 人造 ト 人造 ト

The Hawaiian earring $\mathbb H$

The homomorphisms $\pi_1(\mathbb{H}, 0) \to \pi_1(\bigvee_{i=1}^n S^1, 0) = F(x_1, ..., x_n)$ induce a canonical homomorphism

$$\Psi: \pi_1(\mathbb{H}, 0) \to \varprojlim_n F(x_1, ..., x_n)$$

Theorem (Griffiths, Morgan, Morrison): ker $\Psi = 1$ so Ψ is injective. An element in $\pi_1(\mathbb{H}, 0) = Im(\Psi)$ is a sequence $(w_1, w_2, ...)$ where $w_n \in F(x_1, ..., x_n)$ and for every fixed generator x_i the number of times x_i appears in w_n is eventually constant.

(日)

The Čech expansion

Choose a finite open cover \mathscr{U}_n of X consisting of path connected open balls U with $diam(U) < \frac{1}{n}$ such that $\mathscr{U}_{n+1} \ge \mathscr{U}_n$ (refinement).

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

The Čech expansion

Choose a finite open cover \mathscr{U}_n of X consisting of path connected open balls U with $diam(U) < \frac{1}{n}$ such that $\mathscr{U}_{n+1} \ge \mathscr{U}_n$ (refinement). Let $X_n = N(\mathscr{U}_n)$ be the nerve of \mathscr{U}_n .

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

The Čech expansion

Choose a finite open cover \mathscr{U}_n of X consisting of path connected open balls U with $diam(U) < \frac{1}{n}$ such that $\mathscr{U}_{n+1} \ge \mathscr{U}_n$ (refinement). Let $X_n = N(\mathscr{U}_n)$ be the nerve of \mathscr{U}_n .

Refinement gives an inverse sequence of polyhedra

$$\cdots \longrightarrow X_{n+1} \xrightarrow{p_{n+1,n}} X_n \xrightarrow{p_{n,n-1}} \cdots \longrightarrow X_2 \xrightarrow{p_{2,1}} X_1$$

Jeremy Brazas The quasitopological fundamental group and the first shape

The fundamental pro-group

The fundamental pro-group is the inverse sequence $(\pi_1(X_n, x_n), (p_{n+1,n})_*)$ of finitely generated groups.

The fundamental pro-group

The fundamental pro-group is the inverse sequence $(\pi_1(X_n, x_n), (p_{n+1,n})_*)$ of finitely generated groups.

The first shape homotopy group is $\check{\pi}_1(X, x_0) = \lim_{n \to \infty} (\pi_1(X_n, x_n), (p_{n+1,n})_*).$

<ロ> <同> <同> < 同> < 同> < 同> <

The fundamental pro-group

The fundamental pro-group is the inverse sequence $(\pi_1(X_n, x_n), (p_{n+1,n})_*)$ of finitely generated groups.

The first shape homotopy group is $\check{\pi}_1(X, x_0) = \lim_{\to \infty} (\pi_1(X_n, x_n), (p_{n+1,n})_*).$

Using partions of unity, construct canonical maps $p_n : X \to X_n$ such that $p_{n+1,n} \circ p_{n+1} \simeq p_n$

<ロ> <同> <同> < 同> < 同> < 同> < □> <

э.

The fundamental pro-group

The fundamental pro-group is the inverse sequence $(\pi_1(X_n, x_n), (p_{n+1,n})_*)$ of finitely generated groups.

The first shape homotopy group is $\check{\pi}_1(X, x_0) = \lim_{\to \infty} (\pi_1(X_n, x_n), (p_{n+1,n})_*).$

Using partitions of unity, construct canonical maps $p_n : X \to X_n$ such that $p_{n+1,n} \circ p_{n+1} \simeq p_n$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The fundamental pro-group

The fundamental pro-group is the inverse sequence $(\pi_1(X_n, x_n), (p_{n+1,n})_*)$ of finitely generated groups.

The first shape homotopy group is $\check{\pi}_1(X, x_0) = \lim_{n \to \infty} (\pi_1(X_n, x_n), (p_{n+1,n})_*).$

Using partitions of unity, construct canonical maps $p_n : X \to X_n$ such that $p_{n+1,n} \circ p_{n+1} \simeq p_n$

The first shape homomorphism is the canonical homomorphism $\Psi : \pi_1(X, x_0) \rightarrow \check{\pi}_1(X, x_0).$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The fundamental pro-group

The fundamental pro-group is the inverse sequence $(\pi_1(X_n, x_n), (p_{n+1,n})_*)$ of finitely generated groups.

The first shape homotopy group is $\check{\pi}_1(X, x_0) = \lim_{\longrightarrow} (\pi_1(X_n, x_n), (p_{n+1,n})_*).$

Using partitions of unity, construct canonical maps $p_n : X \to X_n$ such that $p_{n+1,n} \circ p_{n+1} \simeq p_n$

The first shape homomorphism is the canonical homomorphism $\Psi : \pi_1(X, x_0) \rightarrow \check{\pi}_1(X, x_0).$

If ker $\Psi = 1$, we say X is π_1 -shape injective.

(日)

The fundamental pro-group

The fundamental pro-group is the inverse sequence $(\pi_1(X_n, x_n), (p_{n+1,n})_*)$ of finitely generated groups.

The first shape homotopy group is $\check{\pi}_1(X, x_0) = \lim_{\to \infty} (\pi_1(X_n, x_n), (p_{n+1,n})_*).$

Using partitions of unity, construct canonical maps $p_n : X \to X_n$ such that $p_{n+1,n} \circ p_{n+1} \simeq p_n$

The first shape homomorphism is the canonical homomorphism $\Psi : \pi_1(X, x_0) \rightarrow \check{\pi}_1(X, x_0).$

If ker $\Psi = 1$, we say X is π_1 -shape injective. e.g. 1-dimensional, planar Peano continua.

The quasitopological fundamental group

The quasitopological fundamental group $\pi_1^{qlop}(X, x_0)$ is the usual fundamental group endowed with the quotient topology w.r.t. $\Omega(X, x_0) \rightarrow \pi_1(X, x_0)$, $\alpha \rightarrow [\alpha]$.

- Discrete iff X admits a universal covering (Fabel)
- $\pi_1^{qtop}(X, x_0)$ can fail to be a topological group, e.g. II (Fabel).
- $\pi_1^{qtop}(X, x_0)$ is a quasitopological group.
- A necessary intermediate for a group topology on π₁(X, x₀) which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

The quasitopological fundamental group

The quasitopological fundamental group $\pi_1^{qlop}(X, x_0)$ is the usual fundamental group endowed with the quotient topology w.r.t. $\Omega(X, x_0) \rightarrow \pi_1(X, x_0)$, $\alpha \rightarrow [\alpha]$.

- Discrete iff X admits a universal covering (Fabel)
- $\pi_1^{qtop}(X, x_0)$ can fail to be a topological group, e.g. \mathbb{H} (Fabel).
- $\pi_1^{qtop}(X, x_0)$ is a quasitopological group.
- A necessary intermediate for a group topology on $\pi_1(X, x_0)$ which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

The quasitopological fundamental group

The quasitopological fundamental group $\pi_1^{qtop}(X, x_0)$ is the usual fundamental group endowed with the quotient topology w.r.t. $\Omega(X, x_0) \rightarrow \pi_1(X, x_0)$, $\alpha \rightarrow [\alpha]$.

- Discrete iff X admits a universal covering (Fabel)
- ▶ $\pi_1^{qtop}(X, x_0)$ can fail to be a topological group, e.g. \mathbb{H} (Fabel).
- $\pi_1^{qtop}(X, x_0)$ is a quasitopological group.
- A necessary intermediate for a group topology on $\pi_1(X, x_0)$ which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).

The quasitopological fundamental group

The quasitopological fundamental group $\pi_1^{qtop}(X, x_0)$ is the usual fundamental group endowed with the quotient topology w.r.t. $\Omega(X, x_0) \rightarrow \pi_1(X, x_0)$, $\alpha \rightarrow [\alpha]$.

- Discrete iff X admits a universal covering (Fabel)
- ▶ $\pi_1^{qtop}(X, x_0)$ can fail to be a topological group, e.g. \mathbb{H} (Fabel).
- $\pi_1^{qtop}(X, x_0)$ is a quasitopological group.
- A necessary intermediate for a group topology on $\pi_1(X, x_0)$ which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

The quasitopological fundamental group

The quasitopological fundamental group $\pi_1^{qtop}(X, x_0)$ is the usual fundamental group endowed with the quotient topology w.r.t. $\Omega(X, x_0) \rightarrow \pi_1(X, x_0)$, $\alpha \rightarrow [\alpha]$.

- Discrete iff X admits a universal covering (Fabel)
- $\pi_1^{qtop}(X, x_0)$ can fail to be a topological group, e.g. \mathbb{H} (Fabel).
- $\pi_1^{qtop}(X, x_0)$ is a quasitopological group.
- A necessary intermediate for a group topology on π₁(X, x₀) which has application to the general theory of topological groups, e.g. Every open subgroup of a free topological group is free topological (B).

æ

Topologizing π_1

Guiding principle: If $\alpha_n \to \alpha$ in $\Omega(X, x_0)$, then $[\alpha_n] \to [\alpha]$ in $\pi_1^{qtop}(X, x_0)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Open subgroups and invariant separation

We consider separation axioms and other separation properties.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Open subgroups and invariant separation

We consider separation axioms and other separation properties.

Definition: A space A is totally separated if whenever $a \neq b$, there is a clopen set $U \subset A$ with $a \in U$ and $b \notin U$.

Open subgroups and invariant separation

We consider separation axioms and other separation properties.

Definition: A space A is totally separated if whenever $a \neq b$, there is a clopen set $U \subset A$ with $a \in U$ and $b \notin U$.

Definition: A quasitopological group *G* is invariantly separated if whenever $g \neq h$, there is an open normal subgroup $N \subset G$ such that $gN \neq hN$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Open subgroups and invariant separation

We consider separation axioms and other separation properties.

Definition: A space A is totally separated if whenever $a \neq b$, there is a clopen set $U \subset A$ with $a \in U$ and $b \notin U$.

Definition: A quasitopological group *G* is invariantly separated if whenever $g \neq h$, there is an open normal subgroup $N \subset G$ such that $gN \neq hN$.

Remark: G is invariantly separated $\Leftrightarrow \bigcap_{N \leq G \text{ open}} N = 1.$

invariantly separated \Rightarrow totally separated \Rightarrow Hausdorff

(日)

Comparing the approaches

- 1. Shape theory $\Psi : \pi_1(X, x_0) \rightarrow \check{\pi}_1(X, x_0)$,
- 2. Topological separation in $\pi_1^{qtop}(X, x_0)$.

Question: How much of $\pi_1(X, x_0)$ does each method retain (or forget)?

Comparing the approaches

- 1. Shape theory, $\Psi : \pi_1(X, x_0) \rightarrow \check{\pi}_1(X, x_0)$,
- 2. Classical covering maps $p: Y \rightarrow X$,
- 3. Topological separation in $\pi_1^{qtop}(X, x_0)$.

Question: How much of $\pi_1(X, x_0)$ does each method retain (or forget)?

(日)

Spanier groups

Definition:

The Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

 $\pi^{sp}(\mathcal{U}_n, x_0) = \langle [\alpha \cdot \gamma \cdot \alpha^-] | Im(\gamma) \subset U, U \in \mathcal{U}_n \rangle.$

Remark: $\pi^{sp}(\mathscr{U}_{n+1}, x_0) \subset \pi^{sp}(\mathscr{U}_n, x_0), n \ge 1$

The Spanier group of X is

$$\pi^{sp}(X, x_0) = \bigcap_{n \ge 1} \pi^{sp}(\mathscr{U}_n, x_0).$$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

э

Spanier groups

Definition:

The Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\pi^{sp}(\mathscr{U}_n, x_0) = \langle [\alpha \cdot \gamma \cdot \alpha^-] | Im(\gamma) \subset U, U \in \mathscr{U}_n \rangle.$$

Remark: $\pi^{sp}(\mathscr{U}_{n+1}, x_0) \subset \pi^{sp}(\mathscr{U}_n, x_0), n \ge 1$

The Spanier group of X is

$$\pi^{sp}(X, x_0) = \bigcap_{n \ge 1} \pi^{sp}(\mathscr{U}_n, x_0).$$

Spanier groups

Definition:

The Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\pi^{sp}(\mathscr{U}_n, x_0) = \langle [\alpha \cdot \gamma \cdot \alpha^-] | Im(\gamma) \subset U, U \in \mathscr{U}_n \rangle.$$

Remark: $\pi^{sp}(\mathscr{U}_{n+1}, x_0) \subset \pi^{sp}(\mathscr{U}_n, x_0), n \ge 1$

The Spanier group of X is

$$\pi^{sp}(X, x_0) = \bigcap_{n \ge 1} \pi^{sp}(\mathscr{U}_n, x_0).$$

Spanier groups

Utility: Spanier groups provide a way to determine when (classical) covering maps exist.

Theorem (Spanier): Given $H \le \pi_1(X, x_0)$,

there is a covering map $p: Y \to X, p(y_0) = x_0 \quad \iff \pi^{sp}(\mathscr{U}_n, x_0) \subseteq H \text{ for some } n \ge 1$ such that $p_*(\pi_1(Y, y_0)) = H$

Spanier groups

Utility: Spanier groups provide a way to determine when (classical) covering maps exist.

Theorem (Spanier): Given $H \le \pi_1(X, x_0)$,

there is a covering map

$$p: Y \to X, p(y_0) = x_0 \iff \pi^{sp}(\mathscr{U}_n, x_0) \subseteq H \text{ for some } n \ge 1$$

such that $p_*(\pi_1(Y, y_0)) = H$

Corollary: $\pi^{sp}(X, x_0)$ consists precisely of the homotopy classes $[\alpha] \in \pi_1(X, x_0)$ for which α lifts to a loop for every covering $p : (Y, y_0) \to (X, x_0)$, i.e.

$$\pi^{sp}(X, x_0) = \bigcap_{n \ge 1} \pi^{sp}(\mathscr{U}_n, x_0) = \bigcap_{p:(Y, y_0) \to (X, x_0) \text{ covering}} p_*(\pi_1(Y, y_0))$$

Thick Spanier groups

Definition: The thick Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\Pi^{sp}(\mathscr{U}_n, x_0) = \langle [\alpha \cdot \gamma_1 \cdot \gamma_2 \cdot \alpha^-] | Im(\gamma_i) \subset U_i, U_i \in \mathscr{U}_n, i = 1, 2 \rangle.$$

Note $\pi^{sp}(\mathscr{U}_n, x_0) \subseteq \Pi^{sp}(\mathscr{U}_n, x_0)$

 $\Pi^{sp}(\mathscr{U}_m, x_0) \subseteq \pi^{sp}(\mathscr{U}_n, x_0) \text{ for large enough}$ $m = m(n) \ge n \text{ by paracompactness}$

Remark: $\pi^{sp}(X, x_0) = \bigcap_{n \ge 1} \Pi^{sp}(\mathscr{U}_n, x_0)$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Thick Spanier groups

Definition: The thick Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\Pi^{sp}(\mathscr{U}_n, x_0) = \langle [\alpha \cdot \gamma_1 \cdot \gamma_2 \cdot \alpha^-] | Im(\gamma_i) \subset U_i, U_i \in \mathscr{U}_n, i = 1, 2 \rangle.$$

Note $\pi^{sp}(\mathscr{U}_n, x_0) \subseteq \Pi^{sp}(\mathscr{U}_n, x_0)$

 $\Pi^{sp}(\mathscr{U}_m, x_0) \subseteq \pi^{sp}(\mathscr{U}_n, x_0) \text{ for large enough}$ $m = m(n) \ge n \text{ by paracompactness}$

Remark: $\pi^{sp}(X, x_0) = \bigcap_{n \ge 1} \Pi^{sp}(\mathscr{U}_n, x_0)$

イロト イヨト イヨト イヨト

Thick Spanier groups

Definition: The thick Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\Pi^{sp}(\mathscr{U}_n, x_0) = \langle [\alpha \cdot \gamma_1 \cdot \gamma_2 \cdot \alpha^-] | Im(\gamma_i) \subset U_i, U_i \in \mathscr{U}_n, i = 1, 2 \rangle.$$

Note $\pi^{sp}(\mathscr{U}_n, x_0) \subseteq \Pi^{sp}(\mathscr{U}_n, x_0)$

 $\Pi^{sp}(\mathscr{U}_m, x_0) \subseteq \pi^{sp}(\mathscr{U}_n, x_0) \text{ for large enough } m = m(n) \ge n \text{ by paracompactness}$

Remark: $\pi^{sp}(X, x_0) = \bigcap_{n \ge 1} \Pi^{sp}(\mathscr{U}_n, x_0)$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Thick Spanier groups

Definition: The thick Spanier group of X with respect to \mathcal{U}_n is the normal subgroup

$$\Pi^{sp}(\mathscr{U}_n, x_0) = \langle [\alpha \cdot \gamma_1 \cdot \gamma_2 \cdot \alpha^-] | Im(\gamma_i) \subset U_i, U_i \in \mathscr{U}_n, i = 1, 2 \rangle.$$

Note
$$\pi^{sp}(\mathscr{U}_n, x_0) \subseteq \Pi^{sp}(\mathscr{U}_n, x_0)$$

 $\Pi^{sp}(\mathscr{U}_m, x_0) \subseteq \pi^{sp}(\mathscr{U}_n, x_0) \text{ for large enough } m = m(n) \ge n \text{ by paracompactness}$

Remark: $\pi^{sp}(X, x_0) = \bigcap_{n \ge 1} \Pi^{sp}(\mathscr{U}_n, x_0)$

・ロ・ ・ 四・ ・ 回・ ・ 回・

Thick Spanier groups

Theorem (B, Fabel): There is a level short exact sequence

$$1 \longrightarrow \Pi^{sp}(\mathscr{U}_n, x_0) \longrightarrow \pi_1(X, x_0) \xrightarrow{(p_n)_*} \pi_1(X_n, x_n) \longrightarrow 1$$

Applying \lim_{n} we obtain

$$1 \longrightarrow \pi^{sp}(X, x_0) \longrightarrow \pi_1(X, x_0) \stackrel{\Psi}{\longrightarrow} \check{\pi}_1(X, x_0)$$

In particular,

 $\ker \Psi = \pi^{sp}(X, x_0),$ $\check{\pi}_1(X, x_0) = \lim_{\substack{\text{regular } p}} \operatorname{coker}(p_* : \pi_1(Y, y_0) \to \pi_1(X, x_0)).$

Thick Spanier groups

Theorem (B, Fabel): There is a level short exact sequence

$$1 \longrightarrow \Pi^{sp}(\mathscr{U}_n, x_0) \longrightarrow \pi_1(X, x_0) \xrightarrow{(p_n)_*} \pi_1(X_n, x_n) \longrightarrow 1$$

Applying $\lim_{n \to \infty} we$ obtain

$$1 \longrightarrow \pi^{sp}(X, x_0) \longrightarrow \pi_1(X, x_0) \xrightarrow{\Psi} \check{\pi}_1(X, x_0)$$

In particular,

 $\ker \Psi = \pi^{sp}(X, x_0),$ $\check{\pi}_1(X, x_0) = \lim_{\substack{\text{regular } p}} \operatorname{coker}(p_* : \pi_1(Y, y_0) \to \pi_1(X, x_0)).$

Thick Spanier groups

Theorem (B, Fabel): There is a level short exact sequence

$$1 \longrightarrow \Pi^{sp}(\mathscr{U}_n, x_0) \longrightarrow \pi_1(X, x_0) \xrightarrow{(p_n)_*} \pi_1(X_n, x_n) \longrightarrow 1$$

Applying $\lim_{n \to \infty} we$ obtain

$$1 \longrightarrow \pi^{sp}(X, x_0) \longrightarrow \pi_1(X, x_0) \xrightarrow{\Psi} \check{\pi}_1(X, x_0)$$

In particular,

 $\ker \Psi = \pi^{sp}(X, x_0),$ $\check{\pi}_1(X, x_0) = \varprojlim_{\text{regular p}} \operatorname{coker}(p_* : \pi_1(Y, y_0) \to \pi_1(X, x_0)).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Comparison

Jeremy Brazas The quasitopological fundamental group and the first shape

æ

Comparison

Lemma: Each of the collections

- $1. \ \{\pi^{sp}(\mathcal{U}_n, x_0) | n \ge 1\},\$
- $2. \ \{\Pi^{sp}(\mathcal{U}_n, x_0) | n \geq 1\},\$
- 3. $\{N \leq \pi_1^{qtop}(X, x_0) | N \text{ open}\}$

is cofinal in the other two (when directed by inclusion).

< 日 > < 回 > < 回 > < 回 > < 回 > <

Comparison

Lemma: Each of the collections

- $1. \ \{\pi^{sp}(\mathcal{U}_n, x_0) | n \ge 1\},\$
- $2. \ \{\Pi^{sp}(\mathcal{U}_n, x_0) | n \geq 1\},\$
- 3. $\{N \leq \pi_1^{qtop}(X, x_0) | N \text{ open}\}$

is cofinal in the other two (when directed by inclusion).

Theorem: If X is a Peano continuum, then

$$\ker \Psi = \pi^{\rm sp}(X, x_0) = \bigcap_{N \leq \pi_1^{\rm qtop}(X, x_0) \text{ open}} N.$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Comparison

Lemma: Each of the collections

- $1. \ \{\pi^{sp}(\mathcal{U}_n, x_0) | n \ge 1\},\$
- $2. \ \{\Pi^{sp}(\mathcal{U}_n, x_0) | n \geq 1\},\$
- 3. $\{N \leq \pi_1^{qtop}(X, x_0) | N \text{ open}\}$

is cofinal in the other two (when directed by inclusion).

Theorem: If X is a Peano continuum, then

$$\ker \Psi = \pi^{sp}(X, x_0) = \bigcap_{N \leq \pi_+^{qtop}(X, x_0) \text{ open}} N.$$

Corollary: If X is a Peano continuum, then X is π_1 -shape injective $\Leftrightarrow \pi_1^{qlop}(X, x_0)$ is invariantly separated.

Conclusion

The data of the fundamental group of a Peano continuum X retain by each of

- 1. the covering spaces of X,
- 2. the shape of X,
- 3. open normal subgroups of $\pi_1^{qtop}(X, x_0)$.

is precisely the same.

イロト イヨト イヨト イヨト

Conclusion

The data of the fundamental group of a Peano continuum X retain by each of

- 1. the covering spaces of X,
- 2. the shape of X,
- 3. open normal subgroups of $\pi_1^{qtop}(X, x_0)$.

is precisely the same.

1. and 2. are exhausted but the topology of $\pi_1^{qtop}(X, x_0)$ is rarely generated by open normal subgroups.

Other data retained by $\pi_1^{qtop}(X, x_0)$

Jeremy Brazas The quasitopological fundamental group and the first shape

Other data retained by $\pi_1^{qtop}(X, x_0)$

Separation properties

$\pi_1^{qtop}(X, x_0)$	Interpretation
Invariantly separated	π_1 -shape injective
Totally separated	$\Omega(X, x_0)$ is π_0 -shape injective
	$\Psi_0: \pi_1^{qtop}(X, x_0) = \pi_0(\Omega(X, x_0)) \to \check{\pi}_0(\Omega(X, x_0))$
	is injective
0-dimensional	Ψ_0 is an embedding
T ₃ (T ₄)	?
T ₂	?
$T_0(T_1)$	Homotopically path-Hausdorff

Other data retained by $\pi_1^{qtop}(X, x_0)$

Separation properties

$\pi_1^{qtop}(X, x_0)$	Interpretation
Invariantly separated	π_1 -shape injective
Totally separated	$\Omega(X, x_0)$ is π_0 -shape injective
	$\Psi_0: \pi_1^{qtop}(X, x_0) = \pi_0(\Omega(X, x_0)) \to \check{\pi}_0(\Omega(X, x_0))$
	is injective
0-dimensional	Ψ_0 is an embedding
T ₃ (T ₄)	?
T ₂	?
$T_{1}(T_{0})$	Homotopically path-Hausdorff

Example in cylindrical coordinates

The topology of $\pi_1^{qlop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings. **Example (Conner, Meilstrup, Repovš, Zastrow, Željko):**

1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Example in cylindrical coordinates

The topology of $\pi_1^{qlop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings. **Example (Conner, Meilstrup, Repovš, Zastrow, Željko):**

- 1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,
- 2. $S = \{(r, \theta, z) | z = \sin(1/r), 0 < r < 1\}$ is the surface component.

Example in cylindrical coordinates

The topology of $\pi_1^{qtop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings. **Example (Conner, Meilstrup, Repovš, Zastrow, Željko):**

- 1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,
- 2. $S = \{(r, \theta, z) | z = sin(1/r), 0 < r < 1\}$ is the surface component.
- 3. Pick a countable discrete set $D \subset S$ such that $\overline{D} = D \cup C$

Example in cylindrical coordinates

The topology of $\pi_1^{qlop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings. **Example (Conner, Meilstrup, Repovš, Zastrow, Željko):**

- 1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,
- 2. $S = \{(r, \theta, z) | z = sin(1/r), 0 < r < 1\}$ is the surface component.
- 3. Pick a countable discrete set $D \subset S$ such that $\overline{D} = D \cup C$
- For each d = (r, θ, z) ∈ D, let A_d = [0, r] × {θ} × {z} be the horizontal line connecting C to d.

Example in cylindrical coordinates

The topology of $\pi_1^{qlop}(X, x_0)$ can topologically distinguish homotopy classes which are indistinguishable using shape/coverings. **Example (Conner, Meilstrup, Repovš, Zastrow, Željko):**

- 1. $C = \{0\} \times \{0\} \times [-1, 1]$ is the core component,
- 2. $S = \{(r, \theta, z) | z = sin(1/r), 0 < r < 1\}$ is the surface component.
- 3. Pick a countable discrete set $D \subset S$ such that $\overline{D} = D \cup C$
- For each d = (r, θ, z) ∈ D, let A_d = [0, r] × {θ} × {z} be the horizontal line connecting C to d.
- 5. $\$ = C \cup S \cup \bigcup_{d \in D} A_d$ is a Peano continuum such that ker $\Psi \neq 1$ but $\pi_1^{qtop}(X, x_0)$ is T_1 (Fischer, Repovš, Virk, Zastrow)&(B, Fabel)

Open problems

Problem 1: If *X* is a Peano continuum and $\pi_1^{qtop}(X, x_0)$ is T_2 , must $\pi_1^{qtop}(X, x_0)$ be invariantly separated (i.e. $X \pi_1$ -shape injective)?

Problem 2: If X is a Peano continuum and $\pi_1^{qtop}(X, x_0)$ is T_1 , must $\pi_1^{qtop}(X, x_0)$ be T_4 (equivalently T_3)?

Open problems

Problem 1: If *X* is a Peano continuum and $\pi_1^{qtop}(X, x_0)$ is T_2 , must $\pi_1^{qtop}(X, x_0)$ be invariantly separated (i.e. $X \pi_1$ -shape injective)?

Problem 2: If X is a Peano continuum and $\pi_1^{qtop}(X, x_0)$ is T_1 , must $\pi_1^{qtop}(X, x_0)$ be T_4 (equivalently T_3)?

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @