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Abstract

The path component space of a topological space X is the quotient
space of X whose points are the path components of X. This paper contains
a general study of the topological properties of path component spaces
including their relationship to the zeroth dimensional shape group.

Path component spaces are simple-to-describe and well-known objects but
only recently have recieved more attention. This is primarily due to increased
interest and application of the quasitopological fundamental group πqtop

1 (X, x0)
of a space X with basepoint x0 and its variants; See e.g. [2, 3, 5, 7, 8, 9]. Recall
πqtop

1 (X, x0) is the path component space of the space Ω(X, x0) of loops based
at x0 ∈ X with the compact-open topology. The author claims little originality
here but knows of no general treatment of path component spaces.

1 Path component spaces

Definition 1. The path component space of a topological space X, is the quotient
space π0(X) obtained by identifying each path component of X to a point.

If x ∈ X, let [x] denote the path component of x in X. Let qX : X → π0(X),
q(x) = [x] denote the canonical quotient map. We also write [A] for the image
qX(A) of a set A ⊂ X. Note that if f : X→ Y is a map, then f ([x]) ⊆ [ f (x)]. Thus f
determines a well-defined function f0 : π0(X)→ π0(Y) given by f0([x]) = [ f (x)].
Moreover, f0 is continuous since f0qX = qY f and qX is quotient. Altogether, we
obtain an endofunctor of the category Top of topological spaces.

Proposition 2. π0 : Top→ Top is a functor.

Remark 3. If X has a given basepoint x0, we take the basepoint of π0(X) to be
[x0] and denote the resulting based space as π0(X, x0). This gives a functor on
the category of based topological spaces.

Definition 4. A space X is semi-locally 0--connected if for every point x ∈ X,
there is a neighborhood U of x such that the inclusion i : U → X induces the
constant map i0 : π0(U)→ π0(X).
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Note that π0(X) is discrete if and only if each path component of X is open.

Proposition 5. π0(X) is discrete iff X is semi-locally 0-connected.

Proof. If X is semi-locally 0-connected and x ∈ X, then there is a neighborhood
U of x such that the inclusion i : U→ X induces the constant map i0 : π0(U)→
π0(X). Thus U ⊆ [x] and [x] is open in X. Since any given path component of
X is open, π0(X) is discrete. Conversely, suppose π0(X) is discrete. If x ∈ X, let
U be the open set [x]. Clearly the inclusion [x] → X induces the constant map
π0([x])→ π0(X). �

Corollary 6. If X is locally path connected, then π0(X) is discrete.

Example 7. If X is a geometric simplicial complex or a CW-complex, thenπ0(X)
is discrete.

Another case of interest is when the natural quotient map qX : X→ π0(X) is
a homeomorphism.

Remark 8. The quotient map qX : X → π0(X) is a homeomorphism iff it is
injective. Thus qX is a homeomorphism iff X is totally path disconnected (i.e.
each path component consists of a single point). Specifically, X � π0(X) if X is
totally disconnected or zero dimensional (there is a basis for the topology of X
consisting of clopen sets).

Another general and useful fact about path component spaces is that every
space is a path component space.

Theorem 9. [10] For every space X, there is a paracompact Hausdorff space H(X) and
a natural homeomorphism π0(H(X)) � X.

2 Examples

Example 10. Let T ⊆ R2 be the topologist’s sine curve

T = {(0, 0)} ∪
{
(x, y)|y = sin

(1
x

)
, 0 < x ≤ 1/π

}
and Tc = T ∪ {0} × [−1, 1] be the closed topologist’s sine curve. It is easy to see
that in both cases, the path component space π0(T) � π0(Tc) is homeomorphic
to the Sierpinski space S = {0, 1} with topology {∅, {1}, {0, 1}}. In particular, the
open set {1} cooresponds to the path component of (1/π, 0).

The above example allows us to characterize when certain path component
spaces are T1. Recall that a space X is sequential if for every non-closed set
A ⊂ X, there is a convergent sequence xn → x such that xn ∈ A and x < A.
It is well-known that metric spaces are sequential and sequential spaces are
precisely those which are quotients of metric spaces.
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Proposition 11. If π0(X) is T1, then any map f : T → X from the topologist’s sine
curve induces the constant map f0 : S→ π0(X). If X is sequential, the converse holds.

Proof. Let A = {(0, 0)} and B = T\A be the path components so that π0(T) =
{A,B} with topology {∅, {B}, {A,B}} and let tn = 1

nπ , n ≥ 1. Suppose π0(X) is T1

and f : T → X be a map. Since the singleton { f (B)} is closed in X, f−1
0 ( f (B))

is non-empty and closed in π0(T). Since the only non-empty closed set in
π0(T) containing B is π0(T) = {A,B}, we have f−1

0 ( f (B)) = {A,B}. Therefore
f0(A) = f0(B) showing f0 is constant.

Suppose X is sequential and x ∈ X. To obtain a contradiction, suppose the
singleton {[x]} is not closed in π0(X). Since qX : X→ π0(X) is quotient, [x] is not
closed in X. Thus there is a convergent sequence xn → x such that xn ∈ [x] and
x < [x]. Define a function f : T → X by f (tn) = xn and f (0, 0) = x. Extend f to
the rest of T by defining f on the arc from tn to tn+1 to be a path from xn to xn+1
in X (which exists since xn ∈ [x] for all n). Clearly f is continuous and induces
an injection f0 : S→ π0(X). �

One can generalize this approach to general spaces by replacing convergent
sequences with convergent nets and T by analogous constructions based on
directed sets.

The next example allows us to realiize subspaces of R as path component
spaces of simple spaces constructed independently of Theorem 9.

Example 12. Let X be the set R × [0, 1]. We define a Hausdorff topology
on X such that π0(A × [0, 1]) � A for each subset of the form A × [0, 1] ⊆ X.
The topology on X has a basis consisting of sets of the form {a} × (s, t) and
{a} × (t, 1] ∪ (a, b) × [0, 1] ∪ {b} × [0, s) for 0 < s < t < 1 and a < b. This topology
is a simple extension of the ordered square in [14, §16, Example 3] and is the
order topology given by the dictionary ordering on X. The path components
of X are {z} × [0, 1] for z ∈ R (see [14, §24, Example 6]). It then suffices to
show that for each A ⊆ R, the projection pA : XA → A is quotient, where
XA = A × [0, 1] has the subspace topology of X. Suppose U is open in R
so that U ∩ A is open in A. Since U × [0, 1] = p−1

R
(U) is open in X and so

(U × [0, 1]) ∩ XA = (U ∩ A) × [0, 1] = p−1
A (U ∩ A) is open in XA. Therefore pA is

continuous. Now suppose V ⊆ A such that p−1
A (V) = V×[0, 1] is open in XA. For

each v ∈ V, there is an open neighborhood {v} × (tv, 1] ∪ (v, bv) × I ∪ {bv} × [0, sv)
of (v, 1) contained in V × [0, 1]. Since V × [0, 1] is saturated with respect to pA,
we have ([v, bv]∩A)× [0, 1] ⊂ V× [0, 1]. Similarly, since (v, 0) ∈ V for each v ∈ V
we can find a closed interval [av, v] such that ([av, v] ∩ A) × [0, 1] ⊂ V × [0, 1].
Therefore, for each v ∈ V, we have v ∈ (av, bv) ∩ A ⊆ V. Therefore V is open in
A. Thus pA is quotient, and consequently π0(XA) � A.

Example 13. Using the previous example, we can find a smiple space Y such
that π0(Y) � S1. Let ε : R→ S1 denote the exponential map and X = R × [0, 1]
be the space defined in the previous example. Let Y be the set S1

× [0, 1] with
the quotient topology with respect to ε × id : X → S1

× [0, 1]. The projection
Y→ S1 is precisely the quotient map qY : Y→ π0(Y) and so S1 � π0(Y).
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3 Limits and colimits

Proposition 14. π0 : Top→ Top preserves coproducts and quotients.

Proof. It is immediate that π0(
∐

λ Xλ) �
∐

λ π0(Xλ). If p : X → Y is a quotient
map, then qY ◦ p = p0 ◦ qX is a quotient map. Since qX is quotient, p0 = π0(p) is
quotient. �

Though π0 preserves coproducts, unfortunately it fails to be cocontinuous
(in the sense that it preserves all colimits). Since Top is cocomplete, it suffices
to exhibit a coequalizer which is not preserved [11].

Example 15. Let Y =
{
1, 1

2 ,
1
3 , ..., 0

}
⊆ R. We define parallel maps f , g : N → Y

by f (n) = 1
n and g(n) = 1

n+1 . It is easy to see that the coequalizer of these maps is
homeomorphic to the Sierpinski space S = {0, 1} of Example 10. The Sierpinski
space is path connected since the functionα : [0, 1]→ {0, 1}given byα([0, 1

2 ]) = 0
and α(( 1

2 , 1]) = 1 is continuous. Therefore π0(S) is a one point space. Noting
that bothN = {1, 2, ..., } and Y are totally path disconnected (so π0(N) �N and
π0(Y) � Y), we find that f = f0 and g = g0. Thus the coequalizer of f0 and g0 is
S which is not a one point space. It follows that the path component space of
the coequalizer of f and g is not homeomorphic to the coequalizer of f0 and g0.

One might notice in the previous example that the path component space
of the coequalizer is a quotient of the coequalizer of the induced maps. This
phenomenon in fact generalizes to all (small) colimits.

Proposition 16. Let J be a small category and F : J→ Top be a diagram with colimit
colimF. Suppose colim(π0 ◦ F) is the colimit of π0 ◦ F : J→ Top. There is a canonical
quotient map Q : colim(π0 ◦ F)→ π0(colimF).

Proof. By the colimit existence theorem [11, §V.4], colimF is the coequalizer of
parallel maps f and g and colim(π0 ◦ F) is the coequalizer of parallel maps
f ′ and g′ as seen in the diagram below. The coproducts on the left are
over all morphisms u : j → k in J and the coproducts in the middle col-
umn are over all objects i ∈ J. The naturality of qX : X → π0(X) and the
homeomorphisms π0(

∐
α Xλ) �

∐
λ π0(Xλ) of Proposition 14 gives the com-

mutativity of the squares on the left and top right. By Proposition 14, r0 is
a quotient map. Since r ◦ f = r ◦ g, we have r0 ◦ f0 = r0 ◦ g0. Therefore
r0 ◦ t ◦ f ′ = r0 ◦ f0 ◦ s = r0 ◦ g0 ◦ s = r0 ◦ t ◦ g′. By the universal property of
colim(π0 ◦F), this induces a unique map Q : colim(π0 ◦F)→ π0(colimF) such that
Q ◦ r′ = r0 ◦ t. Since t is a homeomorphism and r0 is a quotient map, Q is also
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quotient.

∐
u: j→k F( j)

f
//

g
//

q
��

∐
i∈J F(i)

q

��

r // colimF

q

��

π0

(∐
u: j→k F( j)

) f0
//

g0
// π0

(∐
i∈J F(i)

) r0 // π0(colimF)

∐
u: j→k π0(F( j))

f ′
//

g′
//

s �

OO

∐
i∈J π0(F(i))

t �

OO

r′ // colim(π0 ◦ F)

∃!Q

OO

�

Corollary 17. Let X ∪Z Y be the pushout of the diagram X Z
f

oo
g
// Y where

π0(Y) is discrete and g0 : π0(Z)→ π0(Y) is surjective. The inclusion j : X→ X∪Z Y
induces a quotient map j0 : π0(X)→ π0(X ∪Z Y) on path component spaces.

We now observe the behavior of π0 on products.

Proposition 18. Let {Xλ} be a family of spaces and X =
∏

λ Xλ. Let qλ : Xλ → π0(Xλ)
and qX : X → π0(X) be the canonical quotient maps and

∏
λ πλ : X →

∏
λ π0(Xλ)

be the product map. There is a natural continuous bijection Φ : π0 (X)→
∏

λ π0(Xλ)
such that Φ ◦ qX =

∏
λ qλ.

Proof. The projections prλ : X → Xλ induces maps (prλ)0 : π0 (X) → π0(Xλ)
which in turn induce the natural map Φ : π0 (X) →

∏
λ π0(Xλ), Φ([(xλ)]) =

([xλ]). Clearly Φ is surjective. If [xλ] = [yλ] for each λ, then there is a path
αλ : [0, 1] → Xλ from xλ to yλ. These maps induce a path α : [0, 1] → X such
that prλ ◦ α = αλ. Since α is a path from (xλ) to (yλ), we have [(xλ)] = [(yλ)].
Thus Φ is injective. �

Corollary 19. Φ : π0 (X)→
∏

λ π0(Xλ) is a homeomorphism if and only if the product
of quotients

∏
λ qλ : X→

∏
λ π0(Xλ) is itself a quotient map.

Proof. This follows from the fact that qX is a quotient map, Φ is a bijection, and
Φ ◦ qX =

∏
λ qλ. �

Corollary 20. If π0(Xλ) is discrete for each λ, then Φ : π0 (X) →
∏

λ π0(Xλ) is a
homeomorphism.

Proof. If π0(Xλ) is discrete, then πλ : Xλ → π0(Xλ) is open. Since products of
open maps are open,

∏
λ πλ : X→

∏
λ π0(Xλ) is open and must be quotient. By

Corollary 19, Φ is a homeomorphism. �

Corollary 21. π0 does not preserve finite products.
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Proof. Let RK be the real line with topology generated by the sets (a, b), (a, b)\K
where K = {1, 1/2, 1/3, 1/4, ...}. LetQK be the rational numbers with the subspace
topology of RK. Now let X = QK tK CK where CK is the cone on K. The path
components of X are the singletons {a} for a ∈ QK\K and the set CK. The
path component space of X is π0(X) � QK/K but the map qX × qX : X × X →
π0(X) × π0(X) is not a quotient map [14, §22]. By Prop. 18 the topology of
π0(X × X) is strictly finer than that of π0(X) × π0(X). �

Other examples of this failure arise in the context of quasitopological fun-
damental groups [2, 8, 9].

4 Mutliplicative structure

A space X with basepoint x0 is an H-space if there is map m : X × X → X
such that the map µ : π0(X) × π0(X) → π0(X) given by µ([x], [y]) = [m(x, y)]
is an associative and unital binary operation with unit [x0] (i.e. π0(X) has the
structure of a monoid).

Definition 22. A semitopological monoid is a monoid M such that multiplication
M × M → M is separately continuous (i.e. continuous in each variable). A
topological monoid is a monoid M in which multiplication M × M → M is
(jointly) continuous.

Proposition 23. If X is an H-space, then π0(X) is a semitopological monoid. If
qX × qX : X × X → π0(X) × π0(X) is a quotient map, then π0(X) is a topological
monoid.

Proof. For any x ∈ X, the diagram

X × {x} m //

qX

��

X

qX

��

π0(X) × {[x]} µ
// π0(X)

commutes. Since the left vertical arrow is quotient, the bottom map is continu-
ous. Thus right multiplication by [x] is continuous. A similar argument shows
that left multiplication by [x] is continuous and that multiplication is jointly
continuous when qX × qX is quotient. �

Proposition 24. For an H-space X, the following are equivalent:

1. qX × qX : X × X→ π0(X) × π0(X) is quotient.

2. The canonical bijection Φ : π0(X×X)→ π0(X)×π0(X), Φ([(x, y)]) = ([x], [y])
is a homeomorphism.

3. π0(X × X) is a topological monoid (with its canonical monoid structure).
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Proof. 1. ⇔ 2. follows from Corollary 19.
1. ⇒ 3. If qX × qX is quotient and π0(X) is a topological monoid by Prop. 23.
Since 2. also holds, π0(X ×X) is isomorphic to the product topological monoid
π0(X) × π0(X).
3. ⇒ 2. Suppose the multiplication µ : π0(X × X) × π0(X × X) → π0(X × X),
µ([(a, b)], [(c, d)]) = [(ac, bd)] where ac and bd are the products under the H-
space structure of X. Let ∗ ∈ X be such that [∗] is the identity of π0(X) and
i, j : X→ X × X be the maps given by i(x) = (∗, x) and j(y) = (y, ∗). Let f = π0(i)
and g = π0( j). Note that µ ◦ ( f × g) : π0(X) × π0(X)→ π0(X × X) is continuous
and is precisely the inverse of Φ. �

If X and Y are H-spaces an H-map is a map f : X→ Y such that f0 is a monoid
homomorphism. The functorality of π0 guarantees that such a homomorphism
is continuous and thus a morphism of semitopological monoids.

Proposition 25. π0 restricts to a functor on the category of H-spaces (and H-maps)
to the category of semitopological monoids (and continuous homomorphisms).

Example 26. [2] Since every topological monoid M (with identity e) is an H-
space, π0(M) is a semitopological monoid with multiplication [m][n] = [mn].
For instance, if Y is any space, let M(Y) =

∐
n≥0 Yn denote the free monoid

on Y (here Y0 = {e} contains the identity and elements are written as finite
words in Y). The path component space π0(M(Y)) is a semitopological monoid
but is not always a topological monoid itself. In particular, the canonical map
Φ : π0(M(Y)) → M(π0(Y)) is therefore a continuous isomorphism of monoids
but is not always a homeomorphism of the underlying spaces.

Definition 27. A space X is compactly generated if X has the final topology
with respect to all maps K → X from compact Hausdorff X. In other words C
is closed in X iff f−1(C) is closed in K for all compact Hausdorff K and maps
f : K→ X.

Proposition 28. If X is a compactly generated H-space such that X ×X and π0(X) ×
π0(X) is compactly generated, then π0(X) is a topological monoid.

Proof. It is well-known that if q : X→ Y is a quotient map where X×X and Y×Y
are compactly generated, then the product q×q : X×X→ Y×Y is quotient [15].
Thus the assumptions in the stated proposition imply that qX × qX is quotient.
The universal property of quotient spaces immediately gives the continuity of
multiplication π0(X) × π0(X)→ π0(X). �

Example 29. All first countable spaces (and more generally sequential spaces)
are compactly generated. Therefore if X is a first countable H-space and π0(X)
is first countable, then π0(X) is a topological monoid.

Recall an involution on a (semitopological) monoid M, with identity e, is
a (continuous) function s : M → M such that s(e) = e and s(ab) = s(b)s(a).
Sometimes, we call the pair (M, s) a semitopological monoid with
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An H-involution on X is a map ∗ : X → X such that π0(∗) : π0(X)→ π0(X) is
an involution on π0(X). We say X is an H-group if there is a map ∗ : X→ X such
that π0(∗) : π0(X) → π0(X) is an inverse operation which gives π0(X) group
structure.

Definition 30. A quasitopological group is a group G with topology such that
inversion G→ G is continuous and multiplication G × G→ G is continuous in
each variable.

Proposition 31. If X is an H-group, then π0(X) is a quasitopological group.

Example 32. If X is a space with basepoint x0, let Ω(X, x0) be the space of loops
α : [0, 1] → X based at x0 with the compact-open topology. The basepoint
of Ω(X, x0) is typically taken to be the constant loop c at the basepoint. It is
well-known that concatenation of loops Ω(X, x0) × Ω(X, x0) → Ω(X, x0) gives
H-space stucture. Moreover, taking reverse loops α(t) = α(1 − t) gives an invo-
lution Ω(X, x0)→ Ω(X, x0) and H-group stucture. Therefore the quasitopological
fundamental group

π1(X, x0) = π0(Ω(X, x0))

is indeed a quasitopological group. For n ≥ 2, let Ωn(X, x0) = Ω(Ωn−1(X, x0), c)
be the n-th iterated loop space. The n-th quasitopological homotopy group of (X, x0)
is the abelian quasitopological group

πn(X, x0) = π0(Ωn(X, x0)).

Similarly, one can define relative quasitopological homotopy groups πn(X,A)
for subspaces A ⊆ X containing the basepoint which are quasitopological
groups for n ≥ 2.

Remark 33. In general, it is a difficult problem to know when the n-th qu-
asitopological homotopy group is a topological group. There are, however,
some simple cases:

1. If πn(X, x0) is discrete, then clearly it is a topological group.

2. It is easy to check that every finite semitopological monoid (resp. qua-
sitopological group) is a topological monoid (resp. topological group). In
particular, if the quasitopological homotopy group πn(X, x0) is finite, then
it must be a topological group.

3. The celebrated Ellis theorem for quasitopological groups [1] gives that
every locally compact Hausdorff quasitopological group is a topological
group. Thus, if πn(X, x0) is locally compact Hausdorff, then πn(X, x0) is
a topological group. Typically, however, fundamental groups of Peano
continua are large, non-locally compact groups.

4. Often quasitpological homotopy groups fail to satisfy the T1 separation
axiom. If G is a quasitopological group with identity e, then the closure e
is a closed, normal subgroup of G contained in every open neighborhood
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of e. The quotient group G/e is the Kolmogorov quotient of G and is
thus universal with respect to continuous homomorphisms f : G→ H to
T1 quasitopological groups H. It is easy to check that G is a topological
group iff G/e is a T1 quasitopological group. Thus we can conclude that
G = πn(X, x0) is a topological group if G/e satisfies one of the previous
three conditions.

The situation for countable quasitopological groups is more complicated
since for each n ≥ 1, there are (compact) metric spaces X such that πn(X, x0) is
countable and Hausdorff but fails to be a topological group. On the other hand,
there are limits to which quasitopological groups arise as quasitopological ho-
motopy groups. For instance, since the k-th power map Ωn(X, x0)→ Ωn(X, x0),
α 7→ αk is continuous, so is the power map πn(X, x0) → πn(X, x0), [α] 7→ [α]k.
Since not all quasitopological groups have this property, we conclue that not
all quasitopological groups are quasitopological homotopy groups [2].

On the other hand, a countably infinite group with the cofinite topology is
a quasitopological group which is not a topological group [1] but which has
continuous power maps. Thus to conclude that such groups cannot arise as
quasitpological homotopy groups of metric spaces, we must use the fact that
multiplication in quasitopological homotopy groups is inherited from contin-
uous multiplication in an H-space.

Lemma 34. If X is a metric space and G = πn(X, x0) is countably infinite, then G does
not have the cofinite topology.

Proof. Since X is a metric space Ωn(X, x0) is first countable. Since G = π0(Ωn(X, x0))
is first countable by assumption (any countably infinite space with the cofinite
topology is first countable), G is a topological group according to Example 29.
This contradicts the fact that an infinite group with the cofinite topology is a
quasitopological group which is not a topological group. �

It is also interesting to know exactly which quasitopological groups whose
underlying group is the additive group of integers can arise as quasitopological
homotopy groups.

Proposition 35. Let G be a non-T1 quasitopological group whose underlying group
is the additive group of integers Z. Then G is a topological group.

Proof. If the topology of G is indiscrete, clearly G becomes a topological group.
Thus we may suppose G is not indiscrete. Since G fails to be T1, then the
closure of the identity is a proper, non-trivial subgroup nZ ⊂ G. Since G/nZ
is a finite cyclic quasitopological group, it is a topological group according to
2. of Remark 33. Now according to part 4 of Remark 33, G is a topological
group. �

Using the previous proposition it is straightforward exercise to classify non-
T1 quasitopological groups with underlying group Z. Lemma 34 indicates the
following problem is more challenging.
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Problem 36. Characterize (up to isomorphism) the T1 quasitopological groups
with underlying groupZ for which there is a metric space X such thatπn(X, x0) �
Z as a quasitopological group.

5 Zero dimensionality and the zeroth shape map

We recall the construction of the zeroth shape space π̌0(X) via the Čech expan-
sion. For more details, see [12]. The 1st shape group and map are studied in
[4].

The nerve of an open cover U of X is the abstract simplicial complex N(U )
whose vertex set is N(U )0 = U and vertices A0, ...,An ∈ U span an n-simplex
iff

⋂n
i=0 Ai , ∅. Whenever V refines U , we can construct a simplicial map

pU V : N(V )→ N(U ), called a projection, given by sending a vertex V ∈ N(V ) to
a vertex U ∈ U such that V ⊆ U. Since we are using refinement, such an assign-
ment of vertices extends linearly to a simplicial map. Moreover, the induced
map |pU V | : |N(V )| → |N(U )| on geometric realization is unique up to based
homotopy. Thus the continuous function pU V 0 : π0(|N(V )|) → π0(|N(U )|) in-
duced on discrete (See example 7) path component spaces is independent of
the choice of simplicial map.

Let Λ be the subset of O(X) consisting of pairs normal open covers 1 of X.
The zeroth shape homotopy space is the inverse limit space

π̌0(X) = lim
←−−

(
π0(|N(U )|), pU V 0,Λ

)
.

Given an open cover U , a map pU : X → |N(U )| is a canonical map if
p−1

U
(St(U,N(U ))) ⊆ U for each U ∈ U . If U ∈ Λ, such a canonical map is

guaranteed to exist: take a locally finite partition of unity {φU}U∈U subordinated
to U and when U ∈ U and x ∈ U, determine pU (x) by requiring its barycentric
coordinate belonging to the vertex U of |N(U )| to beφU(x). A canonical map pU

is also unique up to homotopy and whenever V refines U , the compositions
pU V ◦ pV and pU are homotopic as based maps. Therefore the maps pU 0 :
π0(X)→ π0(|N(U )|) satisfy pU V 0 ◦ pV 0 = pU 0. These homomorphisms induce
a canonical map

Ψ0 : π0(X)→ π̌0(X) given by Ψ0([x]) =
(
[pU (x)]

)
to the limit called the zeroth shape map. We say X is π0-shape injective if Ψ0 is
injective.

Definition 37. A space X is totally separated if for every distinct x, y ∈ X, there
is a clopen set U such that x ∈ U and y ∈ X\U.

Theorem 38. Suppose X is paracompact Hausdorff. Then Ψ0 : π0(X) → π̌0(X) is
injective iff π0(X) is totally separated.

1An open cover of X is normal if it admits a partition of unity subordinated to U . Note that
every open cover of a paracompact Hausdorff space is normal.
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Proof. Recall that π̌0(X) is an inverse limit of discrete spaces and is thus totally
separated. If Ψ0 : π0(X) → π̌0(X) is injective, π0(X) continuously injects into
a totally separated space and therefore must be totally separated. For the
converse, suppose π0(X) is totally separated and [x1], [x2] are distinct elements
of π0(X). Find a clopen set U1 such that [x1] ∈ U1 and [x2] ∈ U2 = π0(X)\U1.
Let Vi = q−1

X (Ui) and V = {V1,V2}. Note V is an open cover of X consisting
of two disjoint clopen sets and thus |N(V )| consists only of two vertices V1,
V2. Since pV is a canonical map, p−1

V
({Vi}) = p−1

V
(St(Vi,N(V ))) ⊆ Vi. But

X = V1 ∪ V2 and X = p−1
V

({V2}) ∪ p−1
V

({V2}) and thus p−1
V

({Vi}) = Vi. Since
xi ∈ Vi, we have pV 0([x1]) = V1 , V2 = pV 0([x2]). By definition of Ψ0, we have
Ψ0([x1]) , Ψ0([x2]). �

The following characterization, suggested by the last theorem, has a straight-
forward proof without using shape theory.

Corollary 39. A space X is totally separated iff it continuously injects into an inverse
limit of discrete spaces.

Proof. One direction is obvious. If X is totally separated, use Theorem 9 to find
a paracompact Hausdorff space H(X) such that π0(H(X)) � X. By Lemma 38,
the natural map Ψ0 : X � π0(H(X))→ π̌0(H(X)) is injective. �

Definition 40. A space X is zero dimensional if its topology is generated by a
basis of clopen sets.

Lemma 41. Suppose X is paracompact Hausdorff. Then Ψ0 : π0(X) → π̌0(X) is a
topological embedding iff π0(X) is zero dimensional Hausdorff.

Proof. One direction is obvious. For the converse, suppose π0(X) is zero dimen-
sional Hausdorff. Since all such spaces are totally separated, Ψ0 is injective.
Suppose U is clopen in π0(X). It suffices to show Ψ0(U) is open in the image
of Ψ0. Suppose [x] ∈ U. Let V1 = q−1

X (U) and V2 = X\V2. Then V = {V1,V2}

is a cover of X by disjoint clopen sets. As in the proof of Theorem 38, we have
pV (Vi) = Vi, i = 1, 2. Note [x] ∈ V1 and let

W = {[V1]} ×
∏

U ,V

π0(|N(U )|) ⊂
∏
U

π0(|N(U )|).

We claim that W∩Im(Ψ0) ⊆ Ψ0(U). If y ∈ X such that (pU 0([y])) = ([pU (y)]) ∈W,
then pV (y) = V1 and thus y ∈ V1. This gives [y] ∈ U completing the proof. �

The previous theorem suggests the following characterization of zero di-
mensionality.

Corollary 42. A space X is zero dimensional Hausdorff iff it embeds as a subspace of
an inverse limit of discrete spaces.

Proof. Recall that inverse limits of discrete spaces are zero dimensional Haus-
dorff and that this property of spaces is hereditary. Thus one direction is
obvious. If X is zero dimensional Hausdorff, then X is a paracompact and thus
Ψ0 : X � π0(X)→ π̌0(X) is a topological embedding by Lemma 41. �
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Corollary 43. If n ≥ 1, then πn(X, x0) is a zero-dimensional quasitopological group
iffΨ0 : πn(X, x0)→ π̌0(Ωn(X, x0)) is an embedding.
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