
Fast Bounds on the Distribution of Smooth
Numbers�

Scott T. Parsell1 and Jonathan P. Sorenson2

1 Mathematics and Actuarial Science, Butler University, Indianapolis, IN 46208 USA
sparsell@butler.edu

http://blue.butler.edu/~sparsell
2 Computer Science and Software Engineering, Butler University

Indianapolis, IN 46208 USA
sorenson@butler.edu

http://www.butler.edu/~sorenson

Abstract. Let P (n) denote the largest prime divisor of n, and let
Ψ(x, y) be the number of integers n ≤ x with P (n) ≤ y. In this paper
we present improvements to Bernstein’s algorithm, which finds rigorous
upper and lower bounds for Ψ(x, y). Bernstein’s original algorithm runs
in time roughly linear in y. Our first, easy improvement runs in time
roughly y2/3. Then, assuming the Riemann Hypothesis, we show how to
drastically improve this. In particular, if log y is a fractional power of
log x, which is true in applications to factoring and cryptography, then
our new algorithm has a running time that is polynomial in log y, and
gives bounds as tight as, and often tighter than, Bernstein’s algorithm.

1 Introduction

For a positive integer n, let P (n) denote the largest prime divisor of n. If
P (n) ≤ y, then n is said to be y-smooth. Smooth numbers are utilized by many
integer factoring and discrete logarithm algorithms, and hence they are of inter-
est in cryptography [19,22]. Define Ψ(x, y) to be the number of integers n ≤ x
that are y-smooth. In this paper, we present improvements to an algorithm of
Bernstein[4,5], based on discrete generalized power series, which gives rigorous
upper and lower bounds for Ψ(x, y).

1.1 Previous Work

To compute the exact value of Ψ(x, y), one could simply factor all the integers
up to x using a sieve. The Buchstab identity

Ψ(x, y) = Ψ(x, 2) +
∑

2<p≤y

Ψ(x/p, p)

� This work was supported by a grant from the Holcomb Research Institute. We wish
to thank the referee, whose comments helped improve this paper.

F. Hess, S. Pauli, and M. Pohst (Eds.): ANTS 2006, LNCS 4076, pp. 168–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fast Bounds on the Distribution of Smooth Numbers 169

leads to a simple recursive algorithm. Bernstein presents several algorithms in
his thesis [3]. See [17] for several more. All of these algorithms are far too slow
for use in applications related to factoring and cryptography.

There are a number of asymptotic estimates for Ψ(x, y) in the literature
[8,10,11,13,14,15,18,20,21], many of which lead to algorithms.

Dickman’s function, ρ(u), is defined as the unique continuous solution to

ρ(u) = 1 (for 0 ≤ u ≤ 1),
ρ(u − 1) + uρ′(u) = 0 (for u > 1).

It is well-known that the estimate Ψ(x, y) ≈ xρ(log x/ log y) holds; for example
Hildebrand [13] proved that for ε > 0, we have

Ψ(x, y) = xρ(u)
(

1 + Oε

(
log(u + 1)

log y

))

where y ≥ 2 and u := u(x, y) = log x/ log y satisfies 1 ≤ u ≤ exp[(log y)3/5−ε].
This range can be extended if we assume the Riemann Hypothesis. Highly ac-
curate estimates for ρ(u) can be computed quickly using numerical integration;
see for example [27].

Hildebrand and Tenenbaum [14] gave a more complicated estimate for Ψ(x, y)
using the saddle-point method. Define

ζ(s, y) :=
∏

p≤y

(1 − p−s)−1,

φ(s, y) := log ζ(s, y),

φk(s, y) :=
dk

dsk
φ(s, y) (k ≥ 1).

Let a be the unique solution to φ1(a, y) + log x = 0. Then

Ψ(x, y) =
xaζ(a, y)

a
√

2πφ2(a, y)

(
1 + O

(
1
u

+
(log y)

y

))

uniformly for 2 ≤ y ≤ x. This theorem has led to a string of algorithms that, in
practice, appear to give significantly better estimates to Ψ(x, y) than those based
on Dickman’s function [17,24,25]. Recently, Suzuki [26] showed how to estimate
Ψ(x, y) quite nicely in only O(

√
log x log y) operations using this approach.

Bernstein’s algorithm [4,6] provides a very nice compromise between comput-
ing an exact value of Ψ(x, y) (which is very slow) and computing an estimate
(which is fast, but not as reliably accurate): compute rigorous upper and lower
bounds for Ψ(x, y). Bernstein’s algorithm introduces an accuracy parameter α,
and his algorithm creates upper and lower bounds for Ψ(x, y) that are off by at
most a factor of 1 + O(α−1 log x), implying a choice of, say, α � log x log log y.
As we will show in the next section, Bernstein’s algorithm has a running time of

O

(
y

log log y
+

y log x

(log y)2
+ α log x log α

)

170 S.T. Parsell and J.P. Sorenson

arithmetic operations, which is roughly linear in y. It also generates, for free,
rigorous bounds on Ψ(x′, y) for certain values of x′ < x.

1.2 New Results

We present two improvements to Bernstein’s algorithm.
Our first improvement is a simple one that Bernstein mentioned but did not

analyze. In essence, the idea is to use an algorithm to compute π(t), the number
of primes up to t, for many values of t with 2 ≤ t ≤ y, rather than use a prime
number sieve that finds all primes up to y. The result, Algorithm 3.1, has the
same accuracy as the original, with a running time of

O

(
α

y2/3

log y
+ α log x log α

)

operations.
Our second improvement is to choose a parameter z, with 1451 ≤ z < y

and z � α4(log α)2, and then use the π(t) algorithm for t ≤ z, but use the
fast-to-compute estimate

|π(t) − li(t)| <

√
t log t

8π
(t ≥ 1451)

for t > z, where li(t) is the logarithmic integral. The above inequality follows
from work of Schoenfeld [23] under the assumption of the Riemann Hypothesis
(see also [9, Exercise 1.36]). This improvement, Algorithm 4.1, leads to a running
time of

O

(
α

z2/3

log z
+ α log x log αy

)

operations, with a relative error of at most O(α−1 log x). In particular, if we
take α � log x(log log y)2, say, resulting in z � (log x)4(log log x)2(log log y)8, we
obtain the running time of

O((log x)11/3(log log x)1/3(log log y)22/3)

operations. In applications related to factoring and discrete logarithms, we have
log x ≈ (log y)3, so that our algorithm runs in time polynomial in log y. With
such a small running time, we can choose to make α larger, resulting in more
accurate upper and lower bounds for Ψ(x, y), in less time.

1.3 A Comparison

Below we compare the relative error and running times (with big-Oh understood)
for several different algorithms.

Fast Bounds on the Distribution of Smooth Numbers 171

For log x = (log y)2 so that u = log y we have:

Relative Error Algorithm Running Time

log log y/log y xρ(u) (log y)2

(log y)−1 Suzuki [26] (log y)3/2

(log y)−2 Bernstein [4,6] y

(log y)−2 Algorithm 4.1 (log y)44/3+o(1)

(log y)−3 Bernstein [4,6] y

(log y)−3 Algorithm 4.1 (log y)55/3+o(1)

y−1 Bernstein [4,6] y(log y)3

y−1 Algorithm 4.1 y(log y)3

For log x = (log y)3 so that u = (log y)2 we have:

Relative Error Algorithm Running Time

log log y/log y xρ(u) (log y)4

(log y)−1 Suzuki [26] (log y)2

(log y)−2 Bernstein [4,6] y
(log y)−2 Algorithm 4.1 (log y)55/3+o(1)

(log y)−3 Bernstein [4,6] y
(log y)−3 Algorithm 4.1 (log y)22+o(1)

y−1 Bernstein [4,6] y(log y)4

y−1 Algorithm 4.1 y(log y)4

1.4 Organization

The rest of this paper is organized as follows. In §2 we review Bernstein’s algo-
rithm and provide a running time analysis. In §3 we present and analyze our first
improved algorithm. In §4 we present the second improved algorithm, along with
a running time analysis. In §5 we perform an accuracy analysis of the algorithm
from §4. Finally in §6 we present some timing results.

2 Bernstein’s Algorithm

In this section, we review Bernstein’s algorithm [4,6] that gives rigorous upper
and lower bounds for Ψ(x, y). We also give a running time analysis.

Consider a discrete generalized power series

F (X) =
∑

r

arX
r,

172 S.T. Parsell and J.P. Sorenson

where r ranges over the real numbers. The ar may lie in any fixed ring or field,
although we will limit our interest to the reals. We require that, for any real h,
the set {r ≤ h : ar �= 0} is finite. We write

distrhF :=
∑

r≤h

ar,

the sum of the coefficients of F on powers of X below h.
We make the reasonable restriction that x be a power of 2. Define lg x :=

log2 x, and let h := lg x so that 2h = x. Then for |X | < 1 we have

Ψ(2h, y) = distrh

∑

P (n)≤y

X lg n

= distrh

∏

p≤y

(
1 + X lg p + X2 lg p + · · ·

)

= distrh

∏

p≤y

(
1 − X lg p

)−1

= distrh exp
∑

p≤y

log
(
1 − X lg p

)−1

= distrh exp

⎛

⎝
∑

p≤y

∑

k≥1

1
k

Xk lg p

⎞

⎠ .

Here we used the identity log(1 − t)−1 =
∑

k≥1 tk/k for |t| < 1.
To reduce the number of terms in this power series, we approximate each

prime p using a fractional power of 2. Define p ≤ p and p ≥ p as such.
Replacing p with p in the series above, we denote the resulting series by

B+(x, y), which overestimates Ψ :

Ψ(2h, y) ≤ B+(x, y) := distrh exp

⎛

⎝
∑

p≤y

∑

k≥1

1
k

Xk lg p

⎞

⎠ .

Replacing p with p, we denote the resulting series by B−(x, y) which underesti-
mates Ψ :

Ψ(2h, y) ≥ B−(x, y) := distrh exp

⎛

⎝
∑

p≤y

∑

k≥1

1
k

Xk lg p

⎞

⎠ .

We now present the algorithm for computing a lower bound for Ψ(x, y). Com-
puting the upper bound is similar.

Algorithm 2.1. Recall that x = 2h. WLOG we are computing B−(x, y), the
lower bound.

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <
(log x)e

√
log y.

Fast Bounds on the Distribution of Smooth Numbers 173

2. Find the primes up to y, and for each p, compute p such that

α lg p = �α lg p	 (1)

(and similarly α lg p =
α lg p� for the upper bound).
For example, if α = 10, then 2 = 2, 3 := 216/10 ≈ 3.03, 5 := 224/10 ≈ 5.28,
and 7 := 229/10 ≈ 7.46.

3. Compute G(X) :=
∑

p≤y

�h/ lg p�∑

k=1

1
k
Xk lg p.

4. Compute expG(X) using an FFT-based algorithm.
5. Compute distrh exp G(X) by summing the coefficients.

Note that one can compute distrh′ exp G(X) for any h′ ≤ h along the way, giving
a lower bound for Ψ(2h′

, y) as well, essentially for free.

Theorem 2.2. When y is sufficiently large, Algorithm 2.1 computes upper and
lower bounds, B+(x, y) and B−(x, y), for Ψ(x, y) satisfying

B−(x, y)
Ψ(x, y)

≥ 1 − log x

α lg 3
and

B+(x, y)
Ψ(x, y)

≤ 1 +
2 log x

α lg 3

using at most

O

(
y

log log y
+

y log x

(log y)2
+ α log x log α

)

arithmetic operations.

Proof. If we set

ε1 = max
p≤y

(
lg p

lg p
− 1

)
and ε2 = max

p≤y

(
1 −

lg p

lg p

)

and take ε ≥ max{ε1, ε2}, then one has

Ψ(x1/(1+ε), y) = distrh

∏

p≤y

(1 − X(1+ε) lg p)−1 ≤ B−(x, y)

and
Ψ(x1/(1−ε), y) = distrh

∏

p≤y

(1 − X(1−ε) lg p)−1 ≥ B+(x, y).

Hildebrand [16] shows that Ψ(cx, y) ≤ cΨ(x, y) when y is sufficiently large and
c ≥ 1 + exp(−

√
log y). Taking c = xε/(1±ε), we find that

B−(x, y)
Ψ(x, y)

≥ x−ε/(1+ε) ≥ 1 − ε log x and
B+(x, y)
Ψ(x, y)

≤ xε/(1−ε) ≤ 1 + 2ε logx,

provided that x is sufficiently large and

exp(−
√

log y) < ε log x < 1/2.

In view of (1), we can take ε = 1/(α lg 3).

174 S.T. Parsell and J.P. Sorenson

As for the running time, Step 2 can be done with a prime sieve [2], taking
O(y/ log log y) operations. In Step 3, G(X) will have O(αh) nonzero terms, and
so takes O(hy/(log y)2) time to construct. The FFT-based exponentiation algo-
rithm in Step 4 takes only O(αh log(αh)) operations [7]. Finally, Step 5 takes
only O(αh) time. Adding this up gives the stated runtime bound. �

In practice, likely one of the first two terms will dominate the running time.

3 The First Improvement

Define ni := π(2i/α) − π(2(i−1)/α), the number of primes p such that α lg p = i,
or equivalently α lg p = i − 1.

We improve Bernstein’s algorithm by first computing the ni values, and then
use them to compute G(X).

Algorithm 3.1. WLOG we are computing B−(x, y), the lower bound.

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <
(log x)e

√
log y.

2. Compute the ni values for α ≤ i ≤ α lg y.

3. Compute G(X) :=
�α lg y�∑

i=α

ni

�hα/i�∑

k=1

1
k

Xki/α.

4. Compute expG(X) using an FFT-based algorithm.
5. Compute distrh exp G(X) by summing the coefficients.

Similarly, for the upper bound we have

G(X) :=
�α lg y�−1∑

i=α−1

ni+1

�hα/i�∑

k=1

1
k

Xki/α.

Bernstein mentions this improvement in his paper [6], but gives no analysis, and
his code (downloadable from cr.yp.to) does not use it.

Theorem 3.2. When y is sufficiently large, Algorithm 3.1 computes upper and
lower bounds, B+(x, y) and B−(x, y), for Ψ(x, y) satisfying

B−(x, y)
Ψ(x, y)

≥ 1 − log x

α lg 3
and

B+(x, y)
Ψ(x, y)

≤ 1 +
2 log x

α lg 3

using at most

O

(
α

y2/3

log y
+ α log x log α

)

arithmetic operations.

Again, we expect the first term to dominate the running time.

Fast Bounds on the Distribution of Smooth Numbers 175

Proof. The accuracy analysis of Algorithm 3.1 is identical to that of Algorithm
2.1, so we only need to perform a runtime analysis. We can use the algorithm
of Deléglise and Rivat[12] to compute π(t) in time O(t2/3/(log t)2). This means
that it takes

O

(
α log y · y2/3

(log y)2

)

operations to compute all the ni values (Step 2). The time to construct G(X)
or G(X) (Step 3) is then proportional to

�α lg y�∑

i=α

α log x

i
= O(α log x log α).

The remaining steps have the same complexity as Algorithm 2.1. �

4 The Second Improvement

Next we show how to make Bernstein’s algorithm faster and tighter, especially
when y is large. The idea is to choose a parameter z < y, and only compute the
ni values for i ≤ α lg z. For larger i, we estimate ni using the prime number the-
orem and the Riemann Hypothesis. This introduces more error, but the greatly
improved running time allows us to choose a larger α to more than compensate.

Assuming the Riemann Hypothesis, we have

|π(t) − li(t)| <

√
t log t

8π
(2)

when t ≥ 1451 (see [23,9]), so we require that z > 1451. We note that a very
good estimate for li(t) can be computed in O(log t) time (see equations 5.1.3 and
5.1.10, or even 5.1.56, in [1]).

Define n±
i , our upper and lower bound estimates for ni, as follows:

– For i ≤ α lg z, n−
i := n+

i := ni.

– For i > α lg z, n−
i := max

⎧
⎨

⎩0,

(
li(2i/α) −

√
2i/α log(2i/α)

8π

)
−

∑

j<i

n−
j

⎫
⎬

⎭,

and n+
i := max

⎧
⎨

⎩0,

(
li(2i/α) +

√
2i/α log(2i/α)

8π

)
−

∑

j<i

n+
j

⎫
⎬

⎭.

We define G−(X) by replacing ni with n−
i in the definition of G(X):

G−(X) :=
�α lg y�∑

i=α

n−
i

�hα/i�∑

k=1

1
k

Xki/α,

and define
A−(2h, y) := distrh exp G−(X).

176 S.T. Parsell and J.P. Sorenson

We define G+(X) and A+(x, y) in a similar way for the upper bound.
Note that, for A−(x, y) to be a rigorous lower bound on Ψ(x, y), it is not

necessary for n−
i ≤ ni, but merely that, for every i,

∑

j≤i

n−
j ≤

∑

j≤i

nj = π(2i/α).

Similarly, for A+(x, y) to be a rigorous upper bound it suffices that, for every i,
∑

j≤i

n+
j ≥

∑

j≤i

nj = π(2i/α).

We achieve this assuming the Riemann Hypothesis. This leads us to the following
algorithm.

Algorithm 4.1. WLOG we are computing A−(x, y).

1. Choose an accuracy parameter α, an integer, that satisfies 2 log x < α lg 3 <
(log x)e

√
log y, and choose a parameter z < y with z � α4(log α)2.

2. Compute the n−
i values as defined above.

3. Compute G−(X) :=
�α lg y�∑

i=α

n−
i

�hα/i�∑

k=1

1
k

Xki/α.

4. Compute expG−(X) using the FFT.
5. Compute distrh exp G−(X) by summing the coefficients.

In the next section we prove the following:

Theorem 4.2 (RH). When y is sufficiently large, Algorithm 4.1 computes up-
per and lower bounds, A+(x, y) and A−(x, y), for Ψ(x, y) satisfying

A−(x, y)
Ψ(x, y)

≥ 1 − α log x log z

6
√

z
− log x

α lg 3
+

(log x)2 log z

6
√

z lg 3

and
A+(x, y)
Ψ(x, y)

≤ 1 +
α log x log z

3
√

z
+

2 log x

α lg 3
+

2(log x)2 log z

3
√

z lg 3
.

Because α � log x, asymptotically we can ignore the last term in each case. The
other two terms balance when α is asymptotic to z1/4/

√
log z. This justifies our

choosing z proportional to α4(log α)2 in Step 1 of the algorithm, and this implies
that

Ψ(x, y)
A±(x, y)

= 1 + O

(
log x

α

)
.

To achieve a tighter bound with A±(x, y) than is obtained with B±(x, y) in
Algorithm 3.1, we will simply choose α larger. For example, if in Algorithm 3.1
we used α � log x log log y, then in our improved algorithm we might use α �
log x(log log y)2. As we will see in §6, we can tolerate a larger α and still get a
faster running time.

Fast Bounds on the Distribution of Smooth Numbers 177

Theorem 4.3. Algorithm 4.1 computes A+(x, y) and A−(x, y) in

O

(
α

z2/3

log z
+ α log x log αy

)

operations.

Proof. We have the following:

– It takes O(αz2/3/ log z) time to compute the n−
i for i ≤ α lg z in Step 2.

– It takes O(α log x log y) time to compute the n−
i for i > α lg z in Step 2.

– The remaining steps take at most O(α log x log α) steps, the same as in
Algorithm 3.1.

Adding this up completes the proof. �

If we choose α � log x(log log y)2, say, making z � (log x)4(log log x)2(log log y)8,
then the running time is

O((log x)11/3(log log x)1/3(log log y)22/3).

In applications to factoring, we have, roughly, log x ≈ (log y)3, so in this case
our running time is (log y)11+o(1), which, asymptotically, is significantly better
than y2/3+o(1).

5 An Accuracy Analysis

In this section, we present the proof of Theorem 4.2.
For the purposes of accuracy analysis, we will redefine n−

i and n+
i for i >

α lg z as

n−
i := li(2i/α) −

√
2i/α log(2i/α)

8π
−

(
li(2(i−1)/α) +

√
2(i−1)/α log(2(i−1)/α)

8π

)

and

n+
i := li(2i/α) +

√
2i/α log(2i/α)

8π
−

(
li(2(i−1)/α) −

√
2(i−1)/α log(2(i−1)/α)

8π

)
.

On recalling (2), we may rewrite this as

n−
i = Li − Δi ≤ ni ≤ Li + Δi = n+

i , (3)

where
Li := li(2i/α) − li(2(i−1)/α)

and

Δi :=
2i/(2α) log 2

8πα

(
i +

i − 1
21/(2α)

)
≤ i2i/(2α) log 2

4πα
. (4)

178 S.T. Parsell and J.P. Sorenson

These n±
i values lead to weaker bounds on Ψ(x, y) than those used in

Algorithm 4.1, but they are much easier to work with, and the results we obtain
still apply to Algorithm 4.1.

It follows easily from (3) that

n−
i ≥ ni(1 − δi) and n+

i ≤ ni(1 + δi), (5)

where δi := 2Δi/ni. Moreover, it follows from (3) and (4) after some computation
that

π(w)−π(w/c) ≥ li(w)−li(w/c)−
√

w log w

4π
≥

(
1− 1

c

)
li(w)− w log c

c(log w)2
−

√
w log w.

Taking c = 21/α and noting that

1 − 1
c

=
∞∑

k=1

(−1)k+1(log 2)k

k!αk
≥ 0.9 log 2

α

for α ≥ 4, we find that

π(w) − π(2−1/αw) ≥ 0.9w log 2
α log w

− w

α(log w)2
≥ (log 2)2w

α log w
,

provided that w is sufficiently large and α ≤ w1/4. Thus on taking w = 2i/α, we
obtain

ni ≥ 2i/α log 2
i

for i > α lg z, provided that α ≤ z1/4 and z is sufficiently large. Thus by (4) we
have

δi ≤ i2

4πα2i/(2α) ≤ α(lg z)2

4π
√

z
≤ α(log z)2

6
√

z
:= δ (6)

for i > α lg z, since the expression i2/2i/(2α) is a decreasing function of i for
i > 4α/(log 2). Write

gi(X) =
∞∑

k=1

Xki/α

k
,

and let t = h/ lg z = log x/ log z. Since the smallest power of X in gi(X) is at
least X lg z when i > α lg z, we have

distrh exp G−(X) = distrh

⎡

⎣exp

⎛

⎝
∑

p≤z

∞∑

k=1

Xk lg p

k

⎞

⎠exp

⎛

⎝
�α lg y�∑

i=�α lg z�+1

n−
i gi(X)

⎞

⎠

⎤

⎦

= distrh

⎡

⎢⎣exp

⎛

⎝
�α lg z�∑

i=α

nigi(X)

⎞

⎠
t∑

j=0

1
j!

⎛

⎝
α lg y∑

i=�α lg z�+1

n−
i gi(X)

⎞

⎠
j
⎤

⎥⎦

≥ (1 − δ)tdistrh expG(X),

on recalling (5). It therefore follows from (6) that

Fast Bounds on the Distribution of Smooth Numbers 179

A−(x, y)
B−(x, y)

=
distrh exp G−(X)
distrh exp G(X)

≥ (1 − δ)t ≥ 1 − tδ ≥ 1 − α log x log z

6
√

z
.

Similarly, since (1 + δ)t ≤ 1 + 2tδ whenever 2tδ ≤ 1, one has

A+(x, y)
B+(x, y)

≤ (1 + δ)t ≤ 1 +
α log x log z

3
√

z
,

provided that

α ≤ 3
√

z

log z log x
.

On combining these bounds with the conclusion of Theorem (2.2), we find that

A−(x, y)
Ψ(x, y)

≥ 1 − α log x log z

6
√

z
− log x

α lg 3
+

(log x)2 log z

6
√

z lg 3

and
A+(x, y)
Ψ(x, y)

≤ 1 +
α log x log z

3
√

z
+

2 log x

α lg 3
+

2(log x)2 log z

3
√

z lg 3
.

Thus we start to obtain reasonably accurate upper and lower bounds as soon as

2 logx < min
(

6
√

z

α log z
, α lg 3

)
,

and one can optimize the error terms by taking α � z1/4(log z)−1/2, as suggested
in Algorithm 4.1. This completes the proof of Theorem 4.2.

6 Timing Results

We estimated Ψ(2255, 228) using Algorithm 3.1 with α = 32 and using
Algorithm 4.1 with α = 64. We used z = 23216.

We obtained the following:

B−(x, y) ≈ 39235936 × 1060

A−(x, y) ≈ 39259233 × 1060

A+(x, y) ≈ 43345488 × 1060

B+(x, y) ≈ 51166381 × 1060

Algorithm 3.1 took 12.6 seconds, and Algorithm 4.1 took 2.1 seconds.
Note that we used a prime sieve in place of a π(t) algorithm to compute the

ni values for Algorithm 3.1 and to compute the ni values with i ≤ α lg z for
Algorithm 4.1.

This experiment was done on a Pentium IV 1.3 GHz running Fedora Core
v.4; we used the Gnu C++ compiler and Bernstein’s code (psibound-0.50 from
cr.yp.to) with modifications. (The code is available from the second author via
e-mail.)

180 S.T. Parsell and J.P. Sorenson

Notes

– If the FFT exponentiation algorithm is the runtime bottleneck (Step 4), then
Algorithm 3.1 will perform better in practice; Algorithm 4.1 only does better
when the bottleneck is finding the primes up to y (Step 2).

– Unless y is quite large, finding the primes up to y (or z) and using them to
compute the ni values is more efficient in practice than using an algorithm
for π(t).

– As with all timing experiments, the results depend on the platform, the
compiler, and the programmer.

References

1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,
1970.

2. A. O. L. Atkin and D. J. Bernstein. Prime sieves using binary quadratic forms.
Mathematics of Computation, 73:1023–1030, 2004.

3. Daniel J. Bernstein. Enumerating and counting smooth integers. Chapter 2, PhD
Thesis, University of California at Berkeley, May 1995.

4. Daniel J. Bernstein. Bounding smooth integers. In J. P. Buhler, editor, Third
International Algorithmic Number Theory Symposium, pages 128–130, Portland,
Oregon, June 1998. Springer. LNCS 1423.

5. Daniel J. Bernstein. Arbitrarily tight bounds on the distribution of smooth integers.
In Bennett, Berndt, Boston, Diamond, Hildebrand, and Philipp, editors, Proceed-
ings of the Millennial Conference on Number Theory, volume 1, pages 49–66. A.
K. Peters, 2002.

6. Daniel J. Bernstein. Proving primality in essentially quartic time. To appear in
Mathematics of Computation; http://cr.yp.to/papers.html#quartic, 2006.

7. R. P. Brent. Multiple precision zero-finding methods and the complexity of el-
ementary function evaluation. In J. F. Traub, editor, Analytic Computational
Complexity, pages 151–176. Academic Press, 1976.

8. E. R. Canfield, P. Erdős, and C. Pomerance. On a problem of Oppenheim con-
cerning “Factorisatio Numerorum”. Journal of Number Theory, 17:1–28, 1983.

9. R. Crandall and C. Pomerance. Prime Numbers, a Computational Perspective.
Springer, 2001.

10. N. G. de Bruijn. On the number of positive integers ≤ x and free of prime factors
> y. Indag. Math., 13:50–60, 1951.

11. N. G. de Bruijn. On the number of positive integers ≤ x and free of prime factors
> y, II. Indag. Math., 28:239–247, 1966.

12. M. Deléglise and J. Rivat. Computing π(x): the Meissel, Lehmer, Lagarias, Miller,
Odlyzko method. Math. Comp., 65(213):235–245, 1996.

13. A. Hildebrand. On the number of positive integers ≤ x and free of prime factors
> y. Journal of Number Theory, 22:289–307, 1986.

14. A. Hildebrand and G. Tenenbaum. On integers free of large prime factors. Trans.
AMS, 296(1):265–290, 1986.

15. A. Hildebrand and G. Tenenbaum. Integers without large prime factors. Journal
de Théorie des Nombres de Bordeaux, 5:411–484, 1993.

16. Adolf Hildebrand. On the local behavior of Ψ(x, y). Trans. Amer. Math. Soc.,
297(2):729–751, 1986.

Fast Bounds on the Distribution of Smooth Numbers 181

17. Simon Hunter and Jonathan P. Sorenson. Approximating the number of integers
free of large prime factors. Mathematics of Computation, 66(220):1729–1741, 1997.

18. D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm.
Theoretical Computer Science, 3:321–348, 1976.

19. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, 1997.

20. Pieter Moree. Psixyology and Diophantine Equations. PhD thesis, Rijksuniversiteit
Leiden, 1993.

21. Karl K. Norton. Numbers with Small Prime Factors, and the Least kth Power Non-
Residue, volume 106 of Memoirs of the American Mathematical Society. American
Mathematical Society, Providence, Rhode Island, 1971.

22. C. Pomerance, editor. Cryptology and Computational Number Theory, volume 42 of
Proceedings of Symposia in Applied Mathematics. American Mathematical Society,
Providence, Rhode Island, 1990.

23. L. Schoenfeld. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II.
Mathematics of Computation, 30(134):337–360, 1976.

24. Jonathan P. Sorenson. A fast algorithm for approximately counting smooth num-
bers. In W. Bosma, editor, Proceedings of the Fourth International Algorithmic
Number Theory Symposium (ANTS IV), pages 539–549, Leiden, The Netherlands,
2000. LNCS 1838.

25. K. Suzuki. An estimate for the number of integers without large prime factors.
Mathematics of Computation, 73:1013–1022, 2004. MR 2031422 (2005a:11142).

26. K. Suzuki. Approximating the number of integers without large prime factors.
Mathematics of Computation, 75:1015–1024, 2006.

27. J. van de Lune and E. Wattel. On the numerical solution of a differential-difference
equation arising in analytic number theory. Mathematics of Computation,
23:417–421, 1969.

	Introduction
	Previous Work
	New Results
	A Comparison
	Organization

	Bernstein's Algorithm
	The First Improvement
	The Second Improvement
	An Accuracy Analysis
	Timing Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

