
HUA-TYPE ITERATION FOR MULTIDIMENSIONAL WEYL SUMS

SCOTT T. PARSELL

Abstract. We develop Weyl differencing and Hua-type lemmata for a class of multi-
dimensional exponential sums. We then apply our estimates to bound the number of
variables required to establish an asymptotic formula for the number of solutions of a
system of diophantine equations arising from the study of linear spaces on hypersurfaces.
For small values of the degree and dimension, our results are superior to those stemming
from the author’s earlier work on Vinogradov’s mean value theorem.

1. Introduction

The considerable machinery associated with the Hardy-Littlewood method is quite
successful in estimating the number of integral points in a box that satisfy a diagonal
equation or a system of diagonal equations in many variables. Although the method is
now nearly a century old, the recent innovations of Wooley [39], [40] on Vinogradov’s mean
value theorem and Waring’s problem demonstrate that substantial progress is still being
made on even the most classical questions. As a consequence of these breakthroughs, one
now obtains the expected asymptotic formula for the number of solutions of the additive
equation

c1x
k
1 + · · ·+ csx

k
s = 0, (1.1)

where c1, . . . , cs are nonzero integers, provided that s ≥ 2k2 − 2⌊log2 k⌋. This may be
compared with bounds of the shape Ck2 log k stemming from work of Vinogradov [32],
Hua [19], Wooley [34], and Ford [13]. For smaller k, methods based on refinements of
Weyl differencing and Hua-type lemmata (see for example Vaughan [27], [28], Heath-
Brown [16], and Boklan [5]) lead to superior conclusions. Finally, the iterative method of
Vaughan and Wooley [29], [31], [33] delivers asymptotic lower bounds of the correct order
of magnitude for the number of solutions of (1.1), subject to local solubility hypotheses.

For non-diagonal forms, the circle method has been less successful in achieving reason-
able bounds on the number of variables required, even to demonstrate the existence of a
single non-trivial solution. While some exceptional cases involving cubic equations ([10],
[11], [15], [17], [18]) and sums of non-degenerate binary forms ([8], [9], [38]) have been
handled rather successfully, the general exponential sum estimates available from work of
Birch [4] and Schmidt [26], for example, typically yield bounds growing at least exponen-
tially in the degrees of the underlying forms. An alternative path towards the existence of
solutions to non-diagonal systems, originating in the work of Brauer [6] and Birch [3], is
to employ a diagonalization argument that involves inductively producing linear spaces of
solutions. More recent work has led to bounds of an explicit nature in various situations
(see for instance [12], [21], [35], [37]) for the number of variables required to obtain such
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spaces, but the most general results still exhibit at least exponential growth in the degrees
of the underlying forms.

In the diagonal situation, the perspective on linear spaces is somewhat different. Here
one finds that the linear spaces of affine dimension d up to a certain height P are in
correspondence with certain equivalence classes of solutions to the diophantine system

c1x
j1
11 · · ·x

jd
1d + · · ·+ csx

j1
s1 · · ·x

jd
sd = 0 (j1 + · · ·+ jd = k), (1.2)

lying in the box [1, P ]sd. This leads to a problem of independent interest, for we now
have a natural example of a non-diagonal system with enough specialized structure to
attempt to adapt the techniques that work so well in the additive case. Systems of the
shape (1.2) were first investigated in detail by Arkhipov, Karatsuba, and Chubarikov [1],
who adapted Vinogradov’s methods to show that a bound of the shape s ≥ Ckd+1 log k
suffices to establish asymptotic formulas under a local solubility hypothesis. The author
[22], [23], [25] has extended the newer iterative methods involving smooth numbers (see
[36]) to obtain asymptotic lower bounds of the correct order of magnitude with fewer
variables and has also developed a multidimensional generalization of Vinogradov’s mean
value theorem [24] that sharpens the results of [1]. The purpose of the present paper is
to demonstrate how classical methods of Weyl and Hua can be used to attack the system
(1.2) directly for smaller values of k and d.

The system (1.2) arising from linear spaces on (1.1) is actually unnecessarily specialized
for the analysis since the coefficients c1, . . . , cs are the same in each equation. At least
from the point of view of establishing a Hasse principle, there is no difficulty in allowing
more general coefficient arrays. We adopt the shorthand notation xj = xj1

1 · · ·xjd
d and

|j| = j1 + · · ·+ jd, and let {cij} be nonzero integers. Write Ns,k,d(P ) = Ns,k,d(P ; c) for the
number of solutions of the system

c1jx
j
1 + · · ·+ csjx

j
s = 0 (|j| = k), (1.3)

with x1, . . . ,xs ∈ [−P, P ]d ∩ Zd, and write

ℓ =

(
k + d− 1

d− 1

)
for the number of equations in the system (1.3). Our methods deliver the following
conclusion for the systems associated to lines on cubic hypersurfaces, which improves on
earlier work of the author [22].

Theorem 1.1. When s ≥ 29, one has Ns,3,2(P ) = σP 2s−12 + O(P 2s−12−δ) for some
positive constants σ and δ depending on s and c.

We note for comparison that the argument of [22] establishes the weaker conclusion
Ns,3,2(P ) ≫ P 2s−12 under the stronger hypothesis that s ≥ 55. We mention that the
constant σ appearing in (1.6) represents the usual product of local densities. Specifically,
one has σ = Js,3,2(c)Ss,3,2(c), where J = Js,k,d(c) and S = Ss,k,d(c) are the singular
integral and singular series defined by (4.1) and (4.2) below.

In order to estimate Ns,k,d(P ) via the Hardy-Littlewood method, one needs upper
bounds for the number of solutions of an auxiliary symmetric system. We write Is,k,d(P )
for the number of solutions of the system

s∑
i=1

(xj
i − xj

s+i) = 0 (|j| = k) (1.4)
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with x1, . . . ,x2s ∈ [1, P ]d ∩ Zd, and observe that

Is,k,d(P ) =

∫
[0,1)ℓ

|f(α)|2sdα,

where

f(α) =
∑

x∈[1,P ]d

e

(∑
|j|=k

αjx
j

)
. (1.5)

The bulk of our effort is devoted to obtaining Weyl-type estimates for the exponential
sum (1.5) and Hua-type estimates for the mean values (1.4). For pairs (k, d) ̸= (3, 2),
when information about local solubility is not available, our methods nevertheless lead
to a strong Hasse-type principle for the system (1.3). We let H(k, d) denote the smallest
integer s such that, whenever the system (1.3) possesses a non-singular real solution and
and non-singular p-adic solutions for each prime p, one has the asymptotic formula

Ns,k,d(P ) = JSP sd−kℓ +O(P sd−kℓ−δ), (1.6)

where JS > 0 and where δ is a positive number depending at most on s, k, d, and c.
When k = 3 or d = 2, rather straightforward strategies lead to the following estimates.

Theorem 1.2. For k ≥ 4, one has

H(k, 2) ≤ k(k − 1)2k−2 + 2k(k + 1) + 1,

while for d ≥ 2, one has

H(3, d) ≤ min{2d3 + 6d2 − 20d+ 29, 5
3
d3 + 5d2 + 10

3
d+ 1}.

In particular, we note that the first estimate of Theorem 1.2 produces the bounds
H(4, 2) ≤ 89, H(5, 2) ≤ 221, H(6, 2) ≤ 565, and H(7, 2) ≤ 1457, although the latter
two bounds may be susceptible to improvement by combining the methods of [24] and
[40]. The first alternative in the second estimate of Theorem 1.2 gives H(3, 3) ≤ 77,
H(3, 4) ≤ 173, H(3, 5) ≤ 329, and H(3, 6) ≤ 557, while the second alternative becomes
superior for d ≥ 7 and delivers the bounds H(3, 7) ≤ 841, H(3, 8) ≤ 1201, H(3, 9) ≤ 1651,
H(3, 10) ≤ 2201, and H(3, 11) ≤ 2861. When d ≥ 12, the conclusions stemming from our
methods are again likely to be inferior to those obtainable by applying Wooley’s efficient
congruencing [40] to multidimensional Vinogradov-type systems of the shape studied in
[24]. Here one seeks bounds for Js,k,d(P ), the number of solutions of the augmented system

s∑
i=1

(xj
i − xj

s+i) = 0 (1 ≤ |j| ≤ k) (1.7)

with x1, . . . ,x2s ∈ [1, P ]d∩Zd. Such estimates can be used to bound Is,k,d(P ) by summing
over the equations with 1 ≤ |j| ≤ k − 1 or possibly by adapting the strategy of Wooley
[39] to engineer a more efficient relationship; the latter is a project that we intend to
pursue in a separate paper. One can also adapt the method of Ford [13] to relate the
mean values associated with (1.4) and (1.7), but it turns out that this approach yields
conclusions weaker than ours in all cases under consideration.

Finally, as an illustration of the scope of our methods, we record bounds obtainable for
other small pairs (k, d) with k ≥ 4 and d ≥ 3, in which cases the Hua-type machinery is
more robust.
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Theorem 1.3. One has the bounds

H(4, 3) ≤ 293, H(4, 4) ≤ 809, and H(5, 3) ≤ 1093.

We remark that the bounds H(4, 5) ≤ 1797, H(4, 6) ≤ 3277, H(5, 4) ≤ 3283, and
H(6, 3) ≤ 3741 are also attainable by our methods, but we expect that significantly
better results may be obtained by adapting the new Vinogradov-type techniques of [40].
This is another project that we defer to a future paper.

Throughout, we suppose that k ≥ 2 and d ≥ 2 and that P is sufficiently large in
terms of s, k, d, and c. We further adopt the convention that statements involving ε
are meant to hold for all positive values of ε. We begin in Section 2 by developing our
Weyl differencing procedure and addressing a difficulty concerning its applicability on
a standard set of minor arcs. Then in Section 3 we apply the differencing machinery to
iteratively construct estimates for the mean values Is,k,d(P ) in a style reminiscent of Hua’s
Lemma. A new feature here is that the iteration takes place both with respect to s and d.
Finally, in Section 4, we outline an application of the circle method to deduce our main
conclusions.

The author is very grateful to the Heilbronn Institute for a productive visit to the
University of Bristol and in particular wishes to thank Trevor Wooley, Sean Prendiville,
and Julia Brandes for useful conversations concerning the methods employed in this paper
and related ideas.

2. Weyl differencing and quasi-major arcs

In this section, we describe a simple differencing algorithm for the exponential sum (1.5)
that allows us to isolate a small subset of the coefficients αj for further analysis. The main
idea is to use Cauchy’s inequality to difference with respect to only one of the d variables
at each stage. Here we find it convenient to introduce a differencing vector i = (i1, . . . , id)
with |i| ≤ k − 1 to indicate that we difference il times with respect to the variable xl, for
1 ≤ l ≤ d. We further write J (i) for the set of j with |j| = k with jl ≥ il for each l;
thus J (i) represents the set of indices j for which αj appears explicitly in the resulting
difference polynomial. Finally, it is convenient to write el = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zd for
the vector with 1 in the lth position and zeros elsewhere. Our process is encapsulated in
the following lemma.

Lemma 2.1. Whenever 1 ≤ j ≤ k − 1 and i1, . . . , id are non-negative integers satisfying
i1 + · · ·+ id = j, one has

|f(α)|2j ≪ P d(2j−1)−j
∑

h∈(−P,P )j

∑
x∈Bh(P )

e

(
h1 · · ·hj

∑
j∈J (i)

αjpij(x;h)

)
,

where Bh(P ) is some box contained in [1, P ]d, and where

pij(x;h) =
j1! · · · jd!

(j1 − i1)! · · · (jd − id)!
xj−i + qij(x;h)

for some polynomial qij with integer coefficients of total degree k − j − 1 in x and degree
at most jl − il in xl for 1 ≤ l ≤ d.
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Proof. We proceed by induction on j, noting that for j = 1 and i = el an application of
Cauchy’s inequality gives

|f(α)|2 ≤ P d−1
∑
|h|<P

∑
x∈Bh(P )

e

(∑
|j|=k

αj

(
(x+ hel)

j − xj
))

for some box Bh(P ) ⊆ [1, P ]d. It is clear that (x + hel)
j − xj = 0 whenever jl = 0, and

hence we may replace the sum over |j| = k by one over j ∈ J (el). Moreover, whenever
jl ≥ 1 we find that

(x+ hel)
j − xj = h

(
jlx

j−el +

jl∑
m=2

(
jl
m

)
hm−1xj−mel

)
, (2.1)

which shows that the polynomial pelj(x;h) has the required properties. Next suppose the
result holds for some j ≥ 1 and all i satisfying |i| = j. Then if |i| = j + 1, we select some
l for which il > 0 and write i′ = i − el. Further set x′ = (x1, . . . , xl−1, xl+1, . . . , xd), and
write Ih,l(P ) for the projection of Bh(P ) onto the xl axis. Then the induction hypothesis
in conjunction with Cauchy’s inequality yields

|f(α)|2j+1 ≪ P 2d(2j−1)−2j · P j+d−1
∑
h,x′

∣∣∣∣ ∑
xl∈Ih,l(P )

e

(
h1 · · ·hj

∑
j∈J (i′)

αjpi′j(x;h)

)∣∣∣∣2
= P d(2j+1−1)−(j+1)

∑
h,hj+1,x

e

(
h1 · · ·hj

∑
j∈J (i′)

αj(pi′j(x+ hj+1el;h)− pi′j(x;h))

)
where pi′j is as in the statement of the lemma. Here the summations are taken over
(h, hj+1) ∈ (−P, P )j+1 and x lying in some box Bh,hj+1

(P ) ⊆ [1, P ]d. Now an application
of (2.1) to each term of pi′j shows that

pi′j(x+ hj+1el;h)− pi′j(x;h) = hj+1pij(x;h, hj+1), (2.2)

where pij satisfies the hypotheses of the lemma with j replaced by j+1 whenever j ∈ J (i).
Moreover, the left-hand side of (2.2) is identically zero whenever j ∈ J (i′) \ J (i). This
completes the induction, and the lemma is proved. �

As in the familiar one-dimensional situation, the case j = k − 1 of the above result is
particularly useful for exploiting information concerning rational approximations to the
αj, and we obtain a result bearing strong resemblance to Weyl’s inequality.

Lemma 2.2. If (qj, aj) = 1 and |αj − aj/qj| ≤ q−2
j for some j with |j| = k then one has

f(α) ≪ P d+ε(q−1
j + P−1 + qjP

−k)2
1−k

.

Proof. To isolate the coefficient αj, we choose any t for which jt > 0 and apply Lemma
2.1 with differencing vector i = j− et. Thus we obtain

|f(α)|2k−1 ≪ P d(2k−1−1)−k+1
∑

h∈(−P,P )k−1

∣∣∣∣ ∑
x∈Bh(P )

e(h1 · · ·hk−1j1! · · · jd!(αj1x1+ · · ·+αjdxd))

∣∣∣∣,
where jl = j− et + el, so that in particular we have j = jt. Upon summing the geometric
progression on xt and splitting off the h for which h1 · · ·hk−1 = 0, it now follows from a
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standard estimate for the divisor function that

|f(α)|2k−1 ≪ P d(2k−1−1)−k+1

(
P d+k−2 + P d−1+ε

∑
1≤h≤j!Pk−1

min{P, ||hαj||−1}
)
,

where we have written j! = j1! · · · jd!. The lemma now follows by applying Lemma 2.2 of
Vaughan [30] as in the usual proof of Weyl’s inequality. �

A direct application of Lemma 2.2 on a standard set of minor arcs, in which the com-
plementary major arcs demand that each αj is well-approximated using a common de-
nominator q ≤ P , has the potential to produce very weak Weyl estimates (see for example
Lemma 4.2 of [22]) unless one can obtain excellent control over the least common multiple
of the various qj when the Weyl sum is large. The arguments of Baker [2], Theorems 4.3
and 5.1, handle this type of problem in the one-dimensional case, but we have been unable
to adapt those methods to the present context. Fortunately, we are able to circumvent
this issue by first dealing with a considerably larger set of quasi-major arcs on which the
expected Weyl estimate fails. Before proceeding with this approach, it is useful to have
available a preliminary mean value estimate that applies to any subset of the equations
(1.4).

Lemma 2.3. Suppose that T is any subset of the set of indices j with |j| = k, and write
T = |T |. Further let Is,k,d(P ; T ) denote the number of solutions of the system

s∑
i=1

(xj
i − xj

s+i) = 0 (j ∈ T ) (2.3)

with x1, . . . ,x2s ∈ [1, P ]d. Then whenever s ≥ T , one has

Is,k,d(P ; T ) ≪ P 2sd−T .

Proof. We classify solutions according to the size of the largest non-zero sub-determinant
present in the Jacobian. Write Jac(x) for the T×2sd Jacobian matrix of the system (2.3),
which we arrange in 2s blocks of d variables each, so that the ith block depends only on the
variables xi. We let Vm denote the number of solutions counted by Is,k,d(P ; T ) for which
Jac(x) contains an m×m sub-matrix with nonzero determinant but no (m+1)× (m+1)
sub-matrix with nonzero determinant. Then one clearly has

Is,k,d(P ; T ) ≪
T∑

m=1

Vm.

First suppose that 1 ≤ m < T , and consider a solution counted by Vm. There are(
2sd
m

)(
T
m

)
≪ 1 possible m × m sub-matrices of Jac(x), and we consider one such matrix

Am with nonzero determinant. There are O(Pmd) choices for the at most md different
variables appearing in Am, and given any such choice, there are at least 2s−m remaining
blocks of variables disjoint from those appearing in Am. Since m < T , we may select
a new row Rm+1 of Jac(x) not appearing in Am. Then within the block represented by
a variable xi disjoint from Am, we may select a column Cm+1 for which some variable
xil appears explicitly in row Rm+1. By adjoining Rm+1 and Cm+1 to Am in the obvious
way, we produce an (m + 1) × (m + 1) sub-matrix of Jac(x), whose determinant is nec-
essarily zero by definition of Vm. But no two entries of a given column contain the same
monomial, and hence expanding by minors along Cm+1 shows that this determinant is
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a non-trivial polynomial in some non-empty subset of the variables xi1, . . . , xid. Hence
there are O(P d−1) choices for xi, and repeating this argument for the remaining blocks of
variables disjoint from Am yields the estimate

Vm ≪ Pmd(P d−1)2s−m ≪ P 2sd−2s+m ≪ P 2sd−2T+m ≪ P 2sd−T−1

for 1 ≤ m < T . Finally, consider a solution counted by VT . There are again O(1) choices
for the T columns of Jac(x) in which a non-zero sub-determinant occurs, and we note that
at least T different variables appear explicitly in any such choice of columns. Thus, after
fixing all but T variables, we obtain a system of T polynomial equations in T unknowns,
and we may apply a generalization of Bézout’s Theorem (see Theorem 7.7 in Chapter 1
of Hartshorne [14]) in combination with the Implicit Function Theorem to deduce that
the number of non-singular solutions is bounded by the product of the degrees. Thus we
conclude that VT ≪ P 2sd−T , and this completes the proof. �

We are now able to handle the quasi-major arcs described following the proof of Lemma
2.2. Let M denote the set of α ∈ [0, 1)ℓ with the property that |f(α)| ≥ P d−21−k+τ for
some τ > 0, and write m = [0, 1)ℓ \ M. The following lemma allows us to obtain mean
value estimates towards the end of our iterative process by performing a Hardy-Littlewood
dissection.

Lemma 2.4. Whenever s ≥ (2k−2 + 1)ℓ, one has∫
M

|f(α)|2s dα ≪ P 2sd−kℓ+ε.

Proof. Let α ∈ M. For each j with |j| = k, we apply Dirichlet’s Theorem to obtain
integers qj, aj with (qj, aj) = 1 such that |qjαj − aj| ≤ P 1−k and 1 ≤ qj ≤ P k−1. Then
by applying Lemma 2.2 together with a familiar transference principle (see for example
Vaughan [30], Exercise 2.2), we obtain

f(α) ≪ P d+ε
(
(qj + |qjαj − aj|P k)−1 + P−1 + (qj + |qjαj − aj|P k)P−k

)21−k

.

If qj > P for some j, then we find that f(α) ≪ P d−21−k+ε for all ε > 0, whence α ∈ m.
Thus we may suppose that qj ≤ P for all j, and hence that

f(α) ≪ P d+ε(qj + |qjαj − aj|P k)−21−k

(2.4)

for every j. We now let Mq,a denote the set of α ∈ M for which (2.4) holds, and set
Aq =

∏
|j|=k[1, qj]. On writing s = u+ ℓ, where u ≥ 2k−2ℓ, we therefore have∫

M

|f(α)|2s dα ≪ P 2ud+ε
∑

q∈[1,P ]ℓ

∑
a∈Aq

∫
Mq,a

|f(α)|2ℓdα∏
|j|=k(qj + |qjαj − aj|P k)

.

Now put Pj = q−1
j P 1−k,

q̃ =
∏
|j|=k

qj, S(q, r) =

q∑
a=1

e(ar/q), and σj(x) =
ℓ∑

i=1

(xj
i − xj

ℓ+i).
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Then by applying the technique of Brüdern [7], Lemma 2, we find that∫
M

|f(α)|2s dα ≪ P 2ud+ε
∑

q∈[1,P ]ℓ

q̃−1
∑

x∈[1,P ]2ℓ

∏
|j|=k

S(qj, σj(x))

∫ Pj

−Pj

dβj

1 + |βj|P k

≪ P 2ud−kℓ+ε
∑

q∈[1,P ]ℓ

Mq(P ), (2.5)

where Mq(P ) is the number of solutions of the system of congruences

σj(x) ≡ 0 (mod qj) (|j| = k) (2.6)

with x ∈ [1, P ]2ℓ. By a divisor estimate, a given solution of (2.6) can have σj(x) ̸= 0 for
only O(P ε) values of qj. When T ⊆ J = {j : |j| = k}, write N(P ; T ) for the number of
x ∈ [1, P ]2ℓ satisfying σj(x) = 0 for all j ∈ T . Then since ℓ ≥ |T |, we have by Lemma 2.3
that N(P ; T ) ≪ P 2ℓd−|T | and hence∑

q∈[1,P ]ℓ

Mq(P ) ≪
∑
T ⊆J

∑
q∈[1,P ]|T |

P εN(P ; T ) ≪ P 2ℓd+ε.

The lemma now follows on substituting this estimate in (2.5). �

3. Mean values via Hua-type iteration

We now aim to describe methods for relating Is,k,d(P ) with fixed k to mean values
associated with smaller s and d. We call ∆s,k,d an admissible exponent for Is,k,d(P ) if for
all ε > 0 one has the estimate

Is,k,d(P ) ≪ P 2sd−kℓ+∆s,k,d+ε. (3.1)

We also find it useful to call ηs,k,d an admissible exponent for Js,k,d(P ) if one has

Js,k,d(P ) ≪ P 2sd−K+ηs,k,d+ε (3.2)

for all ε > 0, where, according to [24], Lemma 2.1,

K =
dk

d+ 1

(
k + d

d

)
denotes the total degree of the system (1.7). In what follows, we frequently refer to an
exponent simply as admissible, with the appropriate context (3.1) or (3.2) indicated by
our choice of notation.

To get the iteration started for a given k and d, we may apply Lemma 2.3 with s = ℓ
to conclude that ∆s,k,d = (k − 1)ℓ is admissible, but it is frequently superior to appeal to
the following observation, in which we make use of available lower-dimensional estimates
for systems of the shape (1.4) and (1.7).

Lemma 3.1. Whenever 1 ≤ m ≤ d− 1, one has

Is,k,d(P ) ≪ Is,k,d−m(P )Js,k,m(P ).

Proof. For 1 ≤ i ≤ 2s, we write xi = (yi, zi), where yi ∈ Zm and zi ∈ Zd−m. By first
considering the subsystem of equations of (1.4) with j1 = · · · = jm = 0, we see that that
the number of possibilities for z1, . . . , z2s is at most Is,k,d−m(P ). We now fix any such
choice of z, write zi for the first component of zi, and consider the subsystem of (1.4)
with j1+ · · ·+jm > 0 and j1+ · · ·+jm+1 = k. We aim to show that the number of choices
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for y is bounded by Js,k,m(P ). To this end, we now write j = (j1, . . . , jm) and observe
that the number of possibilities for y1, . . . ,y2s is bounded above by

J∗(P ; z) =

∫
[0,1)r

s∏
i=1

g(α; zi)g(−α; zs+i) dα,

where

g(α; z) =
∑

y∈[1,P ]m

e

( ∑
1≤|j|≤k

αjy
jzk−|j|

)
,

and r =
(
k+m
m

)
− 1. By Hölder’s inequality, one has

J∗(P ; z) ≪
2s∏
i=1

(∫
[0,1)r

|g(α; zi)|2s dα
)1/(2s)

,

and on making the change of variable βj = z
k−|j|
i αj, we deduce that

J∗(P ; z) ≪
2s∏
i=1

(
z−κ
i

∫
Ui

|g(β; 1)|2s dβ
)1/(2s)

,

where

Ui =
∏

1≤|j|≤k

z
k−|j|
i [0, 1) and κ =

∑
1≤|j|≤k

(k − |j|) =
(
k +m

m+ 1

)
− k.

Now by periodicity we finally obtain

J∗(P ; z) ≪
2s∏
i=1

(∫
[0,1)r

|g(β; 1)|2s dβ
)1/(2s)

≪ Js,k,m(P ),

and this completes the proof. �

The Weyl differencing algorithm developed in Lemma 2.1 allows us to relate Is,k,d(P ) to
mean values corresponding to smaller values of s in a style reminiscent of Hua’s Lemma.
The new feature of the multidimensional case is that there are numerous options for
creatively choosing the differencing vector to ensure that the difference polynomials are
identically zero for a relatively large subset of the indices j. This strategy facilitates
relationships with homogeneous subsystems that mimic Is,k,m(P ) or Js,k,m(P ) for some
m < d in a manner similar to Lemma 3.1, and hence we may iterate simultaneously with
respect to s and to d. If we are able to difference fewer than k− 1 times, then there is the
potential to save more per variable in the early stages of the iteration than the factor of
P 21−k

that would stem from Lemma 2.2. We highlight the following simple but effective
procedure, in which we spread the differences out over as many variables as possible to
maximize the homogeneity of the resulting Hua-type system.

Lemma 3.2. Suppose that d ≥ 3, 1 ≤ m ≤ d− 2, and m < j ≤ min(d, k − 1). Then one
has

Is+2j−1,k,d(P ) ≪ P d2j−1Is,k,d(P ) + P d(2j−1)−j+εIs,k,d−m(P )Js,k,m(P ).
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Proof. Applying Lemma 2.1 with i = e1 + · · ·+ ej shows that

Is+2j−1,k,d(P ) ≪ P d(2j−1)−jUs,k,d(P ), (3.3)

where Us,k,d(P ) is the number of solutions of the system

h1 · · ·hjpij(x;h) =
s∑

i=1

(yj
i − yj

s+i), j ∈ J (i)

0 =
s∑

i=1

(yj
i − yj

s+i), j ̸∈ J (i)

(3.4)

with h ∈ (−P, P )j, x ∈ [1, P ]d, and y1, . . . ,y2s ∈ [1, P ]d. We observe that if

j = e1 + · · ·+ ej + (k − j)el (3.5)

for some l with 1 ≤ l ≤ d then j ∈ J (i). Moreover, for j of the shape (3.5) and a given h,
one has pij(x;h) = p(xl;h), where p(x;h) is a polynomial in one variable of degree k − j
with integer coefficients. We classify solutions counted by (3.4) according to whether

h1 · · ·hjp(x1;h) · · · p(xd;h) = 0. (3.6)

Consider first the solutions for which (3.6) holds. Clearly, the number of choices for
h1, . . . , hj and x1, . . . , xd in this situation is O(P j+d−1), and for any such choice the number
of possibilities for y1, . . . ,y2s is bounded above by Is,k,d(P ). Next we consider solutions
in which (3.6) does not hold. We write yi = (zi,wi), where zi ∈ Zm and wi ∈ Zd−m. Here
the indices j for which j1 = · · · = jm = 0 all satisfy j ̸∈ J (i), whence the second subsystem
in (3.4) shows that the number of possibilities for w1, . . . ,w2s is at most Is,k,d−m(P ). We
now fix any such choice of w and observe that since j > m the indices j with jm+1 =
· · · = jd−1 = 0 also satisfy j ̸∈ J (i). Hence the proof of Lemma 3.1 shows that, for fixed
w, the number of possibilities for z satisfying the second subsystem of (3.4) is at most
Js,k,m(P ). Now for fixed w and z, a consideration of the subsystem of (3.4) for which j
has the special shape (3.5), together with an elementary estimate for the divisor function,
shows that h and p(x1;h), . . . , p(xd;h) are determined to O(P ε). Since for a given h and
n the polynomial p(xl;h)− n has O(1) roots, it now follows that

Us,k,d(P ) ≪ P j+d−1Is,k,d(P ) + P εIs,k,d−m(P )Js,k,m(P ),

and the proof is completed on substituting this relation into (3.3). �
There are some intrinsic limitations to arguments of the above type resulting from the

fact that the total degree of the lower-dimensional subsystems considered is less than that
of the original system. In particular, it is impossible to achieve small values of ∆s,k,d using
these processes alone, and hence their utility is confined to relatively small values of s.
For larger values of s, we make use of a Hardy-Littlewood dissection based on Lemmas
2.2 and 2.4, which eventually produces the full savings in (3.1). This final ingredient in
the iteration is recorded in the following lemma.

Lemma 3.3. Suppose that the exponent ∆s,k,d is admissible and that s+ t ≥ (2k−2 +1)ℓ.
Then

∆s+t,k,d = max(0,∆s,k,d − t22−k)

is admissible. In particular, if t ≥ 2k−2∆s,k,d, then ∆s+t,k,d = 0 is admissible.
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Proof. We apply a Hardy-Littlewood dissection, recalling the definitions of m and M from
Section 2. If ∆s,k,d is admissible, then Lemma 2.2 gives∫

m

|f(α)|2s+2t dα ≪
(
sup
α∈m

|f(α)|
)2t ∫

[0,1)ℓ
|f(α)|2s dα ≪ P (2s+2t)d−kℓ+∆s,k,d−t22−k+ε,

while Lemma 2.4 yields ∫
M

|f(α)|2s+2t dα ≪ P (2s+2t)d−kℓ+ε,

and the result follows. �
We now record the number of variables needed to obtain ∆s,k,d = 0 for the pairs (k, d)

appearing in Theorems 1.1, 1.2, and 1.3. Here we find it convenient to define s0(k, d) to
be the smallest integer s for which ∆s,k,d = 0. The following lemma provides a general
argument for handling cubic systems of arbitrary dimension.

Lemma 3.4. Whenever d ≥ 2, one has

s0(3, d) ≤ d3 + 3d2 − 10d+ 14.

Proof. We proceed by induction on d. When d = 2, we recall from [20], Theorem 7, the
estimate

Js,3,1(P ) ≪ P 2s−6+ε (s ≥ 8) (3.7)

and apply this in combination with Lemma 3.1 and Hua’s Lemma ([30], Lemma 2.5) to
obtain ∆8,3,2 = 3. From here we proceed directly to Lemma 3.3 with t = 6 to obtain
∆14,3,2 = 0, whence s0(3, 2) ≤ 14. Now let s = d3 + 3d2 − 10d + 14, and suppose that
s0(3, d) ≤ s for some d ≥ 2, so that ∆s,3,d = 0 is admissible. Combining this with (3.7) in
Lemma 3.1 shows that

∆s,3,d+1 = 3

(
d+ 3

3

)
− 3

(
d+ 2

3

)
− 6 =

3

2
d2 +

9

2
d− 3

is admissible. Hence Lemma 3.3 with t = 2∆s,3,d+1 shows that ∆s+t,3,d+1 = 0 is admissible,
and a simple calculation confirms that

s+ t = (d+ 1)3 + 3(d+ 1)2 − 10(d+ 1) + 14,

which establishes the required bound for s0(3, d+ 1). �
Alternatively, we note that Lemma 2.3 applied to the full system (1.4) gives ∆ℓ,3,d = 2ℓ,

where ℓ = ℓ(3, d) =
(
d+2
3

)
. Hence it follows from Lemma 3.3 with t = 4ℓ that ∆5ℓ,3,d = 0,

whence

s0(3, d) ≤ 5

(
d+ 2

3

)
=

5

6

(
d3 + 3d2 + 2d

)
, (3.8)

and this proves to be superior to Lemma 3.4 whenever d ≥ 7.
When d = 2 we instead apply Wooley [40], Theorem 1.1, to obtain ηk(k+1),k,1 =

∆k(k+1),k,1 = 0, which when inserted in Lemma 3.1 yields

∆k(k+1),k,2 = k(k + 1)− 1
2
k(k + 1)− k = 1

2
k(k − 1). (3.9)

Applying Lemma 3.3 with t = 2k−3k(k − 1) then gives

s0(k, 2) ≤ k(k − 1)2k−3 + k(k + 1). (3.10)
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The proof of the following lemma illustrates the wider variety of strategies available
when k ≥ 4 and d ≥ 3. The main point is that Lemma 3.2 now offers a potential
advantage over Lemma 3.3 in the early stages of the iteration provided that j < k − 1.

Lemma 3.5. One has

s0(4, 3) ≤ 146, s0(4, 4) ≤ 404, and s0(5, 3) ≤ 546.

Proof. (i) When (k, d) = (4, 3), we apply (3.9) and [40] to obtain the admissible exponents
∆20,4,2 = 6 and η20,4,1 = 0, and inserting these into Lemma 3.1 gives ∆20,4,3 = 60−14−10 =
36. Next, we apply Lemma 3.2 with j = 2 and m = 1 to get

Is+2,4,3(P ) ≪ P 11Is,4,3(P ) + P 7+εIs,4,2(P )Js,4,1(P ).

Here the results of (3.9), (3.10), and [40] show that the first term on the right-hand side
dominates when 20 ≤ s ≤ 36 with the currently available estimates for Is,4,3(P ). Thus
after nine applications of this inequality we obtain ∆38,4,3 = 27. Finally, an application
of Lemma 3.3 with t = 4 · 27 = 108 delivers ∆146,4,3 = 0.

(ii) The case (k, d) = (4, 4) is similar. By (i) and [40] we have ∆20,4,3 = 36 and
η20,4,1 = 0, and hence Lemma 3.1 gives ∆20,4,4 = 140 − 24 − 10 = 106. Next, we apply
Lemma 3.2 with j = 2 and m = 1 to get

Is+2,4,4(P ) ≪ P 15Is,4,4(P ) + P 10+εIs,4,3(P )Js,4,1(P ),

and the exponents obtained from (i), in combination with [40], show that the first term
on the right dominates when 20 ≤ s ≤ 58. Thus after 20 iterations we obtain ∆60,4,4 = 86,
and an application of Lemma 3.3 with t = 4 · 86 = 344 delivers ∆404,4,4 = 0.

(iii) Finally, let (k, d) = (5, 3). On recalling (3.9) and [40], we find that Lemma 3.1
gives ∆30,5,3 = 105− 20− 15 = 70. Six applications of Lemma 3.2 with j = 2 and m = 1
in the style of (i) and (ii) above then yields ∆42,5,3 = 64. Next we apply Lemma 3.2 with
j = 3 and m = 2 to get

Is+4,5,3(P ) ≪ P 23Is,5,3(P ) + P 18+εIs,5,2(P )Js,5,1(P ),

and after two applications of this relation we obtain ∆50,5,3 = 62. Finally, an application
of Lemma 3.3 with t = 8 · 62 = 496 gives the result. �

4. The asymptotic formula

The proofs of our theorems are now accessible. We start by observing that

Ns,k,d(P ) =

∫
[0,1)ℓ

s∏
i=1

fi(α) dα,

where

fi(α) =
∑

x∈[−P,P ]d

e

(∑
|j|=k

cijαjx
j

)
.

Set ν = 1/(2ℓ) and write c for the least common multiple of the |cij| with 1 ≤ i ≤ s and
|j| = k. Define the major arc

N(q, a) = {α ∈ [0, 1)ℓ : |qαj − aj| ≤ P 1/2−k (|j| = k)},
and let N denote the union of all N(q, a) with a ∈ [1, q]ℓ, (q, a) = 1, and q ≤ cP 1/2.
Finally, write n = [0, 1)ℓ \N for the minor arcs. Consider a fixed i with 1 ≤ i ≤ s. When
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α ∈ n, we apply Dirichlet’s Theorem for each j with |j| = k to obtain integers bj and
qj ≤ P k−ν with (qj, bj) = 1 such that |qjcijαj − bj| ≤ P ν−k ≤ q−1

j . If qj ≤ P ν for each j,

then on setting q = c
∏

|j|=k qj ≤ cP 1/2 and aj = qbj/(cijqj), we obtain

|αj − aj/q| ≤ (cijqj)
−1P ν−k ≤ q−1P 1/2−k (|j| = k),

contradicting the assumption that α ∈ n. Therefore we must have qj > P ν for some j,
and hence Lemma 2.2 yields the estimate

sup
α∈n

|fi(α)| ≪ P d−21−kν+ε.

Upon recalling the definition of s0(k, d) from Section 3, we find using Hölder’s inequality
and a change of variables that whenever s ≥ 2s0(k, d) + 1 one has∫

n

s∏
i=1

|fi(α)| dα ≪ P sd−kℓ−δ

for some δ > 0. Moreover, the arguments underlying [24], Theorems 1.4 and 6.2 (see also
[25], Lemma 5.4) demonstrate that whenever s ≥ k(ℓ+ 1) + 2 one has∫

N

( s∏
i=1

fi(α)

)
dα = JSP sd−kℓ +O(P sd−kℓ−δ)

for some δ > 0, where J and S denote the singular integral and singular series defined by

J =

∫
Rℓ

∫
[−1,1]sd

e

(∑
|j|=k

βj(c1jγ
j
1 + · · ·+ csjγ

j
s)

)
dγ dβ (4.1)

and

S =
∞∑
q=1

∑
a∈[1,q]ℓ
(q,a)=1

q−sd

s∏
i=1

∑
x∈[1,q]d

e

(
q−1

∑
|j|=k

cijajx
j

)
. (4.2)

The positivity of J and S under the hypothesis of non-singular local solutions follows
from standard arguments (see for example [25], §6), and the proof of Theorem 1.3 is now
completed by recalling Lemma 3.5. Similarly, Theorem 1.2 now follows from Lemma 3.4,
(3.8), and (3.10). Finally, when k = 3 and d = 2, we deduce from the argument of
[22], Lemma 5.1, that JS > 0 unconditionally whenever s ≥ 14, and the conclusion of
Theorem 1.1 therefore follows from Lemma 3.4.
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