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Diophantine approximation with primes and
powers of two

Scott T. Parsell

Abstract. We investigate the values taken by real linear combinations of two
primes and a bounded number of powers of two. Under certain conditions, we
are able to demonstrate that these values can be made arbitrarily close to any
real number by taking sufficiently many powers of two.
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1. Introduction

It was conjectured by Goldbach in 1742 that every even integer exceeding two
can be written as the sum of two prime numbers. Although this is widely believed
to be true, a proof seems to be out of reach with the tools currently available.
Nevertheless, some striking approximations to the conjecture have been established
over the years. Vinogradov proved in 1937 that every sufficiently large odd integer
is the sum of three primes, which of course would follow from the binary Goldbach
conjecture. In the 1970s, Chen [4] proved that every sufficiently large even integer is
the sum of a prime and an integer with at most two prime factors, and Montgomery
and Vaughan [11] showed that the number of “exceptional” even integers up to
X that are not the sum of two primes is O(X1−δ) for some δ > 0. In a different
direction, Linnik [10] showed that every sufficiently large even integer can be written
as the sum of two primes and a bounded number of powers of two. This result is
particularly striking, since the number of sums of powers of two up to X is only a
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power of logX. In some sense, then, Linnik’s result is a very strong approximation
to Goldbach’s conjecture. Using techniques developed by Gallagher [8], several
workers have provided explicit bounds on the number of powers of two required.
Very recently, Heath-Brown and Puchta [9] introduced a new approach leading to
the conclusion that 13 powers of two suffice; moreover, they can reduce this number
to 7 on assuming the Generalized Riemann Hypothesis. Independently, Pintz and
Ruzsa [13] have obtained the same result on GRH and have further announced that
they can prove the theorem unconditionally with only 9 powers of two.

Typically in additive number theory, when one has a method for handling a rep-
resentation problem such as the one described above, it is of interest to examine
to what extent the method can be applied to the analogous forms with real coeffi-
cients. For example, real analogues of the binary and ternary Goldbach problems
have been examined in recent years by Vaughan [15], Brüdern, Cook, and Perelli
[3], and Parsell [12]. Here we investigate the values taken by forms of the shape

λ1p1 + λ2p2 + µ12x1 + · · ·+ µs2xs .(1)

We demonstrate, under certain conditions, that the values of such forms approxi-
mate any real number to arbitrary accuracy as s increases. Our main theorem is
the following.

Theorem 1. Suppose that λ1 and λ2 are real numbers such that λ1/λ2 is negative
and irrational. Further suppose that µ1, . . . , µs are nonzero real numbers such that,
for some i and j, the ratios λ1/µi and λ2/µj are rational. Finally, fix η > 0. Then
there exists an integer s0, depending at most on λ, µ, and η, such that for every
real number γ and every integer s > s0, the inequality

|λ1p1 + λ2p2 + µ12x1 + · · ·+ µs2xs + γ| < η(2)

has infinitely many solutions in primes p1 and p2 and positive integers x1, . . . , xs.

Note that this falls short of a result to the effect that the values of the form (1)
are dense in the real line for some particular value of s. Thus, as is often the case
when attacking analogues of Waring’s problem for forms with real coefficients (see
for example [2] and [7]), this problem is in some ways more complicated than the
coefficient-free version discussed above. On the other hand, certain aspects of our
analysis are actually simpler because we have less need for information about the
distribution of primes in arithmetic progressions.

We prove Theorem 1 using the Davenport-Heilbronn version of the Hardy-
Littlewood method. Along the way, we make use of some of the new ideas of
Heath-Brown and Puchta [9]. Because of the nature of the available estimates for
exponential sums over powers of two, it is not possible to apply the method of
Freeman [7] as in [12] to obtain an asymptotic lower bound for the number of so-
lutions of the inequality (2). Rather, we will obtain a lower bound for the number
of solutions only for a restricted sequence of values of the box size.

The author thanks Trevor Wooley for suggesting this problem and is also grateful
to Eric Freeman, Roger Heath-Brown, and Bob Vaughan for conversations on this
topic.
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2. The Davenport-Heilbronn method

We let X be a sufficiently large real number, and we write L = log2(�X/2M),
where � is a small positive number and M = |µ1|+ · · ·+ |µs|. As usual, we write
e(y) = e2πiy and introduce the exponential sums

f(α) =
∑

�X≤p≤X

(log p)e(αp) and g(α) =
∑

1≤x≤L

e(α2x).

Here and throughout, the sum over p denotes summation over primes. We let
N (X) = N (X, η, γ,λ,µ) denote the number of integer solutions of the inequality
(2) with p1 and p2 prime, �X ≤ p1, p2 ≤ X, and 1 ≤ x1, . . . , xs ≤ L.

In view of the hypotheses of Theorem 1, we may clearly suppose after rearranging
variables that λ1/µ1 and λ2/µ2 are rational numbers. Furthermore, it clearly suf-
fices to prove the theorem under the assumption that η is sufficiently small. Finally,
after multiplying through by a suitable constant on both sides of (2) and possibly
interchanging the roles of the first two indices, we may suppose that λ1 > 1, that
λ2 < −1, and that |λ1/λ2| ≥ 1.

We introduce the familiar kernel

K(α) =
(
sinπαη
πα

)2
and recall (see for example Baker [1], Lemma 14.1) that

K̂(t) =
∫ ∞

−∞
e(αt)K(α) dα = max(0, η − |t|).(3)

We also note that

K(α) � min(η2, α−2).(4)

When B ⊆ R, we let

I(X;B) =
∫

B

f(λ1α)f(λ2α)g(µ1α) · · · g(µsα)e(γα)K(α) dα

and write I(X) for I(X;R). We will show that

I(X) 
 η2X(logX)s(5)

for some infinite sequence of values of X, where the implicit constant depends at
most on λ and µ. It follows from (3) that

I(X) ≤ η(logX)2N (X),

so we can then deduce from (5) that

N (X) 
 ηX(logX)s−2(6)

for this same sequence of values of X, which suffices to prove Theorem 1.
Let δ be a sufficiently small positive number, and write P = X5/18−δ. We dissect

the real line as follows. Write

M = {α : |α| ≤ PX−1}(7)

for the major arc,

m = {α : PX−1 < |α| ≤ L2}(8)
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for the minor arcs, and

t = {α : |α| > L2}(9)

for the trivial arcs. Our plan of attack is to show that I(X; t) = o(XLs), that
|I(X;m)| ≤ C1ηXL

s, and that I(X;M) ≥ C2η
2XLs, where ηC2 − C1 ≥ C3η for

some positive constant C3.

3. Major arc asymptotics

We begin by recalling the familiar prime-counting functions

ϑ(x) =
∑
p≤x

log p and ψ(x) =
∑
n≤x

Λ(n),

where Λ(n) denotes the von-Mangoldt function. We can express the exponential
sum f(α) as the Riemann-Stieltjes integral

f(α) =
∫ X

�X

e(αu)dϑ(u).

Furthermore, the explicit formula for ψ(x) (see for example Davenport [6]), com-
bined with the observation that ψ(x)− ϑ(x) � x1/2+ε for each ε > 0, gives

ϑ(x) = x−
∑
|γ|≤T

xρ

ρ
− log 2π − 1

2
log(1− x−2) +R(x, T ),

where the sum is over zeros ρ = β + iγ of the Riemann zeta function, where T is a
parameter at our disposal, and where R(x, T ) is a piecewise differentiable function
of x satisfying

R(x, T ) � xT−1 log2(xT ) + x1/2+ε.(10)

It follows that

f(α) = v(α) + w(α) + E(α),(11)

where

v(α) =
∫ X

�X

e(αu) du,

w(α) =
∑
|γ|≤T

∫ X

�X

e(αu)uρ−1 du,

and

E(α) =
∫ X

�X

e(αu)
∂

∂u

(
R(u, T )− 1

2
log(1− u−2)

)
du.

The estimate

v(α) � min(X, |α|−1)(12)

is immediate, and a simple integration by parts using (7) and (10) gives

E(α) � PXT−1 log2(XT ) + PX1/2+ε.(13)

whenever α ∈ M. In order to obtain estimates for w(α), we need to recall a zero-
density estimate and a zero-free region for the Riemann zeta function.
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Lemma 2. Let N(σ, T ) denote the number of zeros ρ = β + iγ of the Riemann
zeta function with σ ≤ β ≤ 1 and |γ| ≤ T . For every ε > 0, one has

N(σ, T ) � T (12/5+ε)(1−σ).

Furthermore, there is a constant c > 0 such that the zeta function has no zeros with
|γ| ≤ T and β > 1− c(log T )−2/3 whenever T ≥ 3.

Proof. These results can be found in various sources. For example, the bound for
N(σ, T ) follows from Lemma 3.4 of Ren [14], and the zero-free region follows from
Lemma 4 of Vaughan [15]. �

Slightly sharper results are available in each case, but we will not need them. It
follows from the argument leading to (3.11) of Ren [14] that

w(α) � min(X,X1/2|α|−1/2)
∑
|γ|≤T

Xβ−1.(14)

Using Lemma 2 and integration by parts, we find that∑
|γ|≤T

Xβ−1 �
∫ 1−ξ

1/2

Xσ−1dN(σ, T ) � (logX) max
1/2≤σ≤1−ξ

(X−1T 12/5+ε)1−σ,

where ξ = c(log T )−2/3. On choosing T = X5/12−ε, we therefore obtain∑
|γ|≤T

Xβ−1 � exp(log logX − 2(logX)1/4) � exp(−(logX)1/4).

Thus on recalling (11), (13), and (14), we have

f(α)− v(α) � min(X,X1/2|α|−1/2) exp(−(logX)1/4) +X31/36,

provided that we choose ε to be sufficiently small. It now follows with a little
calculation from (7) and (12) that for any real number µ we have∫

M

f(λ1α)f(λ2α)e(αµ)K(α) dα− J(X,µ) � X exp(−(logX)1/4)

� X(logX)−s−1,

(15)

where

J(X,µ) =
∫

M

v(λ1α)v(λ2α)e(αµ)K(α) dα.

Furthermore, (7) and (12) imply that

J(X,µ) = J(µ) +O(X13/18+δ),(16)

where

J(µ) =
∫ ∞

−∞
v(λ1α)v(λ2α)e(αµ)K(α) dα.

On interchanging the order of integration, we find that

J(µ) =
∫ X

�X

∫ X

�X

K̂(λ1u1 + λ2u2 + µ) du1 du2.
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Suppose that |µ| ≤ �X and that 2�λ1X ≤ |λ2|u2 ≤ (1−�)X. Then (3) shows
that there is an interval for u1, of length η/λ1 and contained in [�X,X], on which
K̂(λ1u1 + λ2u2 + µ) ≥ η/2. It follows that

J(µ) ≥ (1− 3�λ1)η2

2|λ1λ2| X.(17)

From (15) and (16), we obtain

I(X;M) =
∑

x∈[1,L]s

J(µ12x1 + · · ·+ µs2xs + γ) +O(X(logX)−1).

Moreover, our definition of L ensures that |µ12x1 + · · ·+µs2xs +γ| ≤ �X whenever
X is sufficiently large. Thus we deduce from (17) that

I(X;M) ≥ (1−�′)η2

2|λ1λ2| XLs(18)

when X is sufficiently large. Here we have written �′ = 4λ1�, which can be taken
to be arbitrarily small.

4. An auxiliary mean value estimate

A key ingredient in the treatment of the minor arcs is the following mean value
estimate, which we derive following the method of Heath-Brown and Puchta [9].

Lemma 3. Suppose that λ/µ = a/q, where a and q are nonzero integers with q > 0
and (a, q) = 1. If η < |λ/a| and X is sufficiently large, then one has∫ ∞

−∞
|f(λα)g(µα)|2K(α) dα ≤ 25(log 2q)ηXL2.

Proof. In view of (3), we have∫ ∞

−∞
|f(λα)g(µα)|2K(α) dα ≤ η(logX)2S(X),(19)

where S(X) is the number of solutions of the inequality

|λ(p1 − p2) + µ(2x1 − 2x2)| < η(20)

with p1 and p2 primes not exceeding X and x1 and x2 integers not exceeding L.
Since we have assumed that η < |λ/a|, the inequality (20) is equivalent to the
equation

p1 − p2 + q

a
(2x1 − 2x2) = 0,

and here we may bound the number of solutions by following the argument of Heath-
Brown and Puchta [9], Lemma 8. Let r(n) denote the number of representations
of n as a difference of two primes lying in the interval [�X,X]. By a theorem of
Chen [5], whenever n �= 0 we have

r(n) ≤ 5.2h(n)X(logX)−2,

where

h(n) =
∏

p|n, p>2

(
1 +

1
p− 2

)
.
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Thus, on separating out the diagonal solutions, we find that

S(X) ≤ X + 2
∑

1≤x1<x2≤L

r
( q
a
(2x2 − 2x1)

)
≤ X + 10.4X(logX)−2

∑
1≤x1<x2≤L

h
( q
a
(2x2 − 2x1)

)
.

Obviously, only terms for which a divides 2x2 − 2x1 contribute to the above sums.
Since h(n) is a multiplicative function, we have

h
( q
a
(2x2 − 2x1)

)
≤ h(q)h

(
2x2 − 2x1

a

)
≤ h(q)h(2x2−x1 − 1),

and a simple calculation shows that h(q) ≤ 2 log 2q. Thus we obtain

S(X) ≤ X + 20.8X
log 2q

(logX)2
∑

1≤x≤L

(L− x)h(2x − 1).(21)

By equations (34) and (41) of Heath-Brown and Puchta [9], we have∑
1≤x≤Y

h(2x − 1) ≤ 2.2142Y +O(Y 1/2),

and partial summation therefore yields∑
1≤x≤L

(L− x)h(2x − 1) ≤ 1.1072L2 +O(L3/2).

Combining this with (21) gives

S(X) ≤ (1 + 23.03 log 2q)X ≤ 24.5(log 2q)X,

and the lemma now follows from (19) on noting that logX ≤ (1 + �)L for X
sufficiently large. �

5. The minor and trivial arcs

We need the following Weyl-type estimate for the exponential sum over primes,
which we obtain via a standard argument (see for example [15], Lemma 11).

Lemma 4. Suppose that λ1/λ2 is irrational, and let X = q2, where q is the de-
nominator of a convergent to the continued fraction for λ1/λ2. Then one has

sup
α∈m

|f(λ1α)f(λ2α)| � X15/8(logX)5.

Proof. Let α ∈ m, and let Q = X1/4L−2 ≤ P . By Dirichlet’s Theorem, there exist
integers ai and qi with 1 ≤ qi ≤ XQ−1 and (qi, ai) = 1 such that

|λiαqi − ai| ≤ QX−1 (i = 1, 2).

Clearly, a1a2 �= 0, since otherwise we would have α ∈ M. Now suppose that q1 ≤ Q
and q2 ≤ Q. We have

a2q1
λ1

λ2
− a1q2 =

a2

λ2α
(λ1αq1 − a1)− a1

λ2α
(λ2αq2 − a2),

and it follows that

|a2q1
λ1

λ2
− a1q2| ≤ 2

(
1 +

∣∣∣∣λ1

λ2

∣∣∣∣)Q2X−1 <
1
2
q−1
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for X sufficiently large. We therefore deduce from (8) and Legendre’s law of best
approximation that

X1/2 = q ≤ |a2q1| � q1q2L
2 ≤ Q2L2 ≤ X1/2L−2.

From this contradiction, we conclude that either q1 > Q or q2 > Q, and Theorem
3.1 of Vaughan [16] therefore yields the estimate

f(λiα) � L4(Xq−1/2
i +X4/5 +X1/2q

1/2
i ) � X7/8(logX)5

for i = 1 or i = 2, and the lemma now follows on making a trivial estimate. �

It is not currently known how to obtain estimates of the above type for the
exponential sums over powers of two. However, the following lemma provides non-
trivial estimates except on a set of very small measure.

Lemma 5. Let Aν denote the set of α ∈ m for which |g(µiα)| ≥ νL for some i
with 1 ≤ i ≤ s, and write

F (ξ, h) =
1
2h

2h−1∑
r=0

exp

[
ξRe

(
h−1∑
x=0

e(r2x−h)

)]
.

Then, for any h ∈ N, ξ > 0, and � > 0, one has meas(Aν) � L2X−E(ν), where

E(ν) =
ξν

log 2
− logF (ξ, h)

h log 2
− �ξν

log 2
.

Proof. This follows from the proof of Lemma 1 of Heath-Brown and Puchta [9] on
recalling (8) and considering the union of the sets {α ∈ m : |g(µiα)| ≥ νL}. �

Applying Lemma 5 with � sufficiently small, ξ = 1.55, and h = 10, we find
using Mathematica that E(0.954) = 0.87553 is admissible. From this point on, we
set ν = 0.954.

The minor arcs are dealt with in two pieces. First of all, by applying Lemma 4
and making trivial estimates, we obtain

I(X;Aν) � X15/8−E(ν)Ls+7 � X0.9995.

Next, by the Cauchy-Schwarz inequality, we have

|I(X;m\Aν)| ≤ (νL)s−2J 1/2
1 J 1/2

2 ,

where

Ji =
∫ ∞

−∞
|f(λiα)g(µiα)|2K(α) dα.

We therefore deduce from Lemma 3 that

|I(X;m\Aν)| ≤ (0.954)s−2CηXLs,(22)

where C is a constant depending on the denominators of the rational numbers
λ1/µ1 and λ2/µ2. Specifically, if we denote these denominators by q1 and q2, then
the lemma shows that we may take

C = 25(log 2q1)1/2(log 2q2)1/2.
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Finally, to handle the trivial arcs, we observe that (9) gives

I(X; t) � Ls

∫ ∞

L2
|f(λiα)|2K(α) dα

for i = 1 or i = 2. On using (4) and making a change of variable, we find that

I(X; t) � Ls
∑

n≥L2

n−2

∫ n+1

n

|f(λiα)|2dα� Ls−2

∫ 1

0

|f(α)|2dα� XLs−1.

On comparing (18) and (22), and recalling our analysis of the sets Aν and t, we
find that I(X) 
 η2XLs for the sequence of X described above, provided that

s > 2 +
log(1− 2�′)η − log 2C|λ1λ2|

log 0.954
.

This establishes (5), and hence (6), which completes the proof of Theorem 1.
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