A NOTE ON WEYL'S INEQUALITY FOR EIGHTH POWERS

SCOTT T. PARSELL

ABSTRACT. We establish a new bound for the number of solutions of a pair of symmetric diophantine equations, one quartic and one quadratic, in ten variables. This estimate is then used to deduce a modest refinement of Weyl's inequality for eighth powers, which improves on an earlier result of Robert and Sargos.

1. INTRODUCTION

Estimates for exponential sums play a prominent role in analytic number theory, and in particular the sum over kth powers defined by

$$f_k(\alpha; P) = \sum_{1 \le x \le P} e(\alpha x^k), \tag{1.1}$$

where $e(z) = e^{2\pi i z}$, is central to the study of many diophantine problems. The starting point for investigations along these lines is the celebrated work of Weyl [18] on uniform distribution, which leads to upper bounds for $f_k(\alpha; P)$ that depend on the nature of rational approximations to α . Specifically, Weyl's inequality states that if $|\alpha - a/q| \leq q^{-2}$ for some integers a and q with $q \geq 1$ and (a, q) = 1 then one has

$$f_k(\alpha; P) \ll P^{1+\varepsilon} (q^{-1} + P^{-1} + qP^{-k})^{2^{1-k}}.$$
 (1.2)

Thus in particular if $P \ll q \ll P^{k-1}$ then one obtains $f_k(\alpha; P) \ll P^{1-2^{1-k}+\varepsilon}$, and this provides one of the key ingredients for handling the minor arcs in the method devised by Hardy and Littlewood [6] for applications such as Waring's problem. The strategy for proving (1.2), known as Weyl differencing, involves successive squaring of $|f_k(\alpha; P)|$ to reduce the degree of the monomial x^k . After k-1 applications of this process, one is left with a linear polynomial, and the resulting innermost summation is geometric.

For larger k, better results can be obtained by an approach based on Vinogradov's mean value theorem [17]. Following refinements by Linnik [10], Hua [8], Wooley [20], [21], and others, one can replace 2^{1-k} in (1.2) by an exponent $\sigma(k)$ satisfying $\sigma(k)^{-1} \sim \frac{3}{2}k^2 \log k$ (see [21], Theorem 1). For a more comprehensive account of the methods of Weyl and Vinogradov and their applications to diophantine problems, the interested reader is referred to the books of Baker [1], Davenport [4], and Vaughan [16].

Heath-Brown [7] has developed an alternative approach, which leads to superior estimates when k is of moderate size and α has a rational approximations with denominator lying in an intermediate range. Here a symmetric form of Weyl differencing is employed k-3 times to relate estimates for the exponential sum (1.1) to mean values associated to

²⁰¹⁰ Mathematics Subject Classification. Primary: 11L15. Secondary: 11D45, 11D72, 11L07, 11P55. The author is supported in part by National Security Agency Grant H98230-11-1-0190.

SCOTT T. PARSELL

a system of two symmetric diagonal equations, one cubic and one linear. This approach leads to the estimate

$$f_k(\alpha; P) \ll P^{1-\frac{8}{3}2^{-k}+\varepsilon} (P^3 q^{-1} + 1 + q P^{3-k})^{\frac{4}{3}2^{-k}},$$
 (1.3)

under the same conditions preceding (1.2), whenever $k \ge 6$. This conclusion is superior to Weyl's inequality whenever $P^{5/2+\delta} \ll q \ll P^{k-5/2-\delta}$ for some $\delta > 0$.

More recently, Robert and Sargos [12] adapted Heath-Brown's approach, but with k - 4 symmetric differences, to relate (1.1) to mean values of the exponential sum

$$F(\beta,\gamma) = F(\beta,\gamma;P) = \sum_{1 \le x \le P} e(\beta x^2 + \gamma x^4).$$
(1.4)

Define

$$I_{2s}(P) = \int_0^1 \int_0^1 |F(\beta, \gamma)|^{2s} \, d\beta \, d\gamma,$$
(1.5)

and observe that by orthogonality $I_{2s}(P)$ counts the number of solutions of the system of diophantine equations

$$x_1^4 + \dots + x_s^4 = y_1^4 + \dots + y_s^4$$

$$x_1^2 + \dots + x_s^2 = y_1^2 + \dots + y_s^2$$
(1.6)

with $\mathbf{x}, \mathbf{y} \in [1, P]^s$. As a consequence of a more general mean value estimate, Robert and Sargos showed that $I_{10}(P) \ll P^{49/8+\varepsilon}$ and used this to deduce (see [12], Theorem 4 and Lemma 7) that

$$f_k(\alpha; P) \ll P^{1-3 \cdot 2^{-k} + \varepsilon} (P^4 q^{-1} + 1 + q P^{4-k})^{\frac{8}{5}2^{-k}},$$
 (1.7)

under the hypotheses preceding (1.2), whenever $k \geq 8$. This conclusion is superior to Heath-Brown's estimate (1.3) whenever $P^{91/24+\delta} \ll q \ll P^{k-91/24-\delta}$ for some $\delta > 0$.

Very recently, Wooley [23] has obtained

$$f_k(\alpha; P) \ll P^{1+\varepsilon} (q^{-1} + P^{-1} + qP^{-k})^{\frac{1}{2k(k-1)}},$$
 (1.8)

which is superior to (1.2) for $k \ge 8$ and superior to both (1.3) and (1.7) for $k \ge 9$. The bound (1.8) is a consequence of the new efficient congruencing technique developed in [23], which for the first time removes the factor of log k in estimates associated to Vinogradov's mean value theorem.

The purpose of this paper is to provide a slight refinement of (1.7) when k = 8, and we accomplish this by establishing an improved mean value estimate that may be of independent interest. In Section 2, we prove the following using fairly classical arguments.

Theorem 1.1. One has

$$I_{10}(P) \ll P^{6+\varepsilon}.$$

In view of the diagonal solutions to (1.6), one clearly has $I_{10}(P) \gg P^5$. We also mention that the system (1.6) has been studied in detail in the case s = 3. For example, Salberger [13], improving on earlier work of Tsui and Wooley [15], showed that

$$I_6(P) = 6P^3 + O(P^{5/2+\varepsilon}).$$

Robert and Sargos [12], proceeding in a manner similar to Bombieri and Iwaniec [3], actually estimated the more general mean values

$$I_{2s}(P;\lambda) = \int_0^\lambda \int_0^1 |F(\beta,\gamma)|^{2s} d\beta \, d\gamma,$$

which may be interpreted in terms of the number of solutions of a system of diophantine inequalities. By applying a version of van der Corput's B Process, together with a third derivative estimate, they showed that

$$I_{2s}(P;\lambda) \ll \lambda P^{\mu_s + \varepsilon} + P^{2s - 6 + \varepsilon},$$

where $\mu_3 = 3$, $\mu_4 = 9/2$, and $\mu_5 = 49/8$. The above estimate for $I_6(P; \lambda)$ was then applied by Sargos [14] to obtain an exponential sum estimate based on the fifth derivative. It would appear that our new estimate for $I_{10}(P; 1)$ does not provide any improvements in applications of this sort, but our result could potentially be relevant to work on simultaneous additive equations of the type studied in [11].

As a consequence of Theorem 1.1, we are able to further improve on Weyl's inequality for eighth powers, albeit for a restricted set of α . We prove in Section 3 that if $k \geq 8$ and the conditions preceding (1.2) hold then one has

$$f_k(\alpha; P) \ll P^{1 - \frac{16}{5}2^{-k} + \varepsilon} (P^4 q^{-1} + 1 + q P^{4-k})^{\frac{8}{5}2^{-k}},$$
 (1.9)

which is superior to (1.7) for all α and to (1.3) whenever $P^{11/3+\delta} \ll q \ll P^{k-11/3-\delta}$ for some $\delta > 0$. However, it transpires that Wooley's estimate (1.8) is superior to ours for all α when $k \geq 9$, and hence the new content of (1.9) may be summarized in the following modest refinement for eighth powers.

Theorem 1.2. If $|\alpha - a/q| \le q^{-2}$ for some integers a and q with $q \ge 1$ and (a,q) = 1, then one has

$$f_8(\alpha; P) \ll P^{79/80+\varepsilon} (P^4 q^{-1} + 1 + q P^{-4})^{1/160}.$$

For comparison, the result (1.7) of Robert and Sargos yields the same estimate with the exponent 79/80 = 0.9875 replaced by 253/256 = 0.98828125. Moreover, our estimate is superior to (1.2) whenever $P^{13/4+\delta} \ll q \ll P^{19/4-\delta}$, to (1.3) whenever $P^{11/3+\delta} \ll q \ll P^{13/3-\delta}$ and to (1.8) whenever $P^{24/7+\delta} \ll q \ll P^{32/7-\delta}$. We are not aware of any immediate applications of our new estimate to diophantine problems. In particular, the bound

$$G(8) \le 117$$

for the number of variables required to obtain the asymptotic formula in Waring's problem, recently established by Wooley [22], is not susceptible to improvement via Theorem 1.2. In this case, the strength of the mean value estimates stemming from [23] is so great that the quality of the Weyl-type inequalities becomes less significant.

The author is grateful to the Brigham Young University Department of Mathematics for its generous hospitality during his visit as part of the 2010–2011 Special Year in Number Theory. In particular, he wishes to thank Roger Baker for motivating this work and for many valuable conversations and suggestions. Finally, the author thanks the referee for useful comments.

SCOTT T. PARSELL

2. The tenth moment estimate

Our goal in this section is to establish Theorem 1.1, and we begin by employing a strategy reminiscent of Hua [9], Chapter 5. By symmetric Weyl differencing as in Heath-Brown [7], we have

$$|F(\beta,\gamma)|^2 = \sum_{|h| < P/2} \sum_{z \in \mathcal{I}(h)} e(4zh\beta + (8z^3h + 8zh^3)\gamma),$$

where $\mathcal{I}(h)$ is a subinterval of [1, P]. An application of Cauchy's inequality followed by a second difference then yields

$$\begin{split} |F(\beta,\gamma)|^4 &\leq P \sum_{|h| < P/2} \left| \sum_{z \in \mathcal{I}(h)} e(4zh\beta + (8z^3h + 8zh^3)\gamma) \right|^2 \\ &= P \sum_{|h|,|g| < P/2} \sum_{z \in \mathcal{I}(h,g)} e(8hg\beta + 16hg(3z^2 + g^2 + h^2)\gamma) \end{split}$$

where $\mathcal{I}(h, g)$ is a subinterval of [1, P].

It therefore follows that $I_{10}(P) \leq P\mathcal{V}(P)$, where $\mathcal{V}(P)$ denotes the number of integral solutions of the system

$$16hg(3z^{2} + g^{2} + h^{2}) = \sum_{i=1}^{3} (x_{i}^{4} - y_{i}^{4})$$

$$8hg = \sum_{i=1}^{3} (x_{i}^{2} - y_{i}^{2})$$
(2.1)

with

$$h|, |g| < P/2, \quad 1 \le z \le P, \quad \text{and} \quad \mathbf{x}, \mathbf{y} \in [1, P]^3.$$
 (2.2)

Then one has

$$I_{10}(P) \le P(\mathcal{V}_0(P) + \mathcal{V}_1(P)),$$
 (2.3)

where $\mathcal{V}_0(P)$ denotes the number of solutions of (2.1) satisfying (2.2) with hg = 0, and where $\mathcal{V}_1(P)$ denotes the number of solutions with $hg \neq 0$. First consider a solution counted by $\mathcal{V}_0(P)$. After fixing one of the $O(P^2)$ possible choices for h, g, and z, it follows from Wooley [19], Theorem 4.1, that the number of possibilities for \mathbf{x} and \mathbf{y} is $O(P^{3+\varepsilon})$, and we therefore conclude that

$$\mathcal{V}_0(P) \ll P^{5+\varepsilon}.\tag{2.4}$$

We now consider solutions counted by $\mathcal{V}_1(P)$. We find it convenient to introduce the notation

$$S_j(\mathbf{x}, \mathbf{y}) = y_1^j + y_2^j + y_3^j - x_2^j - x_3^j \qquad (j = 2, 4)$$

and to further classify solutions according to whether

$$S_2(\mathbf{x}, \mathbf{y})^2 - S_4(\mathbf{x}, \mathbf{y}) = 0.$$
 (2.5)

Let $\mathcal{V}_2(P)$ denote the number of solutions counted by $\mathcal{V}_1(P)$ for which (2.5) does not hold, and write $\mathcal{V}_3(P)$ for the number of solutions in which (2.5) does hold. We first consider a solution counted by $\mathcal{V}_2(P)$. Given any of the $O(P^5)$ choices for x_2, x_3, y_1, y_2 , and y_3 not satisfying (2.5), the second equation in (2.1) yields

$$x_1^2 = 8hg + S_2(\mathbf{x}, \mathbf{y}), \tag{2.6}$$

and upon substituting this into the first equation of (2.1) we discover that the variables h, g, and z must satisfy

$$16hg(3z^2 + g^2 + h^2 - 4hg - S_2(\mathbf{x}, \mathbf{y})) = S_2(\mathbf{x}, \mathbf{y})^2 - S_4(\mathbf{x}, \mathbf{y}).$$
(2.7)

It follows from a standard estimate for the divisor function that h and g are now determined to $O(P^{\varepsilon})$, and z is then determined to O(1) as a solution of a non-trivial polynomial equation. We therefore have $\mathcal{V}_2(P) \ll P^{5+\varepsilon}$, so in view of (2.3) and (2.4) the theorem will follow upon establishing the estimate

$$\mathcal{V}_3(P) \ll P^{5+\varepsilon}.\tag{2.8}$$

To establish (2.8), we relate (2.5) to the representation of integers by binary quadratic forms. It is easy to see that (2.5) implies

$$x_2^4 + x_3^4 + x_2^2 x_3^2 - A(\mathbf{y})(x_2^2 + x_3^2) + B(\mathbf{y}) = 0, \qquad (2.9)$$

where

$$A(\mathbf{y}) = y_1^2 + y_2^2 + y_3^2$$
 and $B(\mathbf{y}) = y_1^2 y_2^2 + y_1^2 y_3^2 + y_2^2 y_3^2$.

We now set $X_2 = x_2^2$ and $X_3 = x_3^2$, and make the change of variable $X_1 = X_2 + \frac{1}{2}X_3$. Then (2.9) becomes

$$X_1^2 + \frac{3}{4}X_3^2 - A(\mathbf{y})(X_1 + \frac{1}{2}X_3) + B(\mathbf{y}) = 0.$$
(2.10)

Next we complete the square to obtain

$$(X_1 - \frac{1}{2}A(\mathbf{y}))^2 + \frac{3}{4}(X_3 - \frac{1}{3}A(\mathbf{y}))^2 = \frac{1}{3}A(\mathbf{y})^2 - B(\mathbf{y}),$$

from which it follows easily that

$$3(2X_1 - A(\mathbf{y}))^2 + (3X_3 - A(\mathbf{y}))^2 = 2(y_1^2 - y_2^2)^2 + 2(y_1^2 - y_3^2)^2 + 2(y_2^2 - y_3^2)^2.$$
(2.11)

Clearly, the right-hand side of (2.11) is zero if any only if $y_1 = y_2 = y_3$. In this case, we trivially have O(P) choices for \mathbf{y} and $O(P^2)$ choices for X_1 and X_3 . Moreover, for a choice of \mathbf{y} with $y_1y_2y_3 \neq 0$ we know from Estermann [5] that the number of possibilities for X_1 and X_3 is $O(P^{\varepsilon})$. Thus in any case the number of solutions to (2.11) in the variables X_1 , X_3 , y_1 , y_2 , and y_3 is $O(P^{3+\varepsilon})$, and this also determines x_2 and x_3 . The values of h and g may be assigned in $O(P^2)$ ways, and the values of x_1 and z are now determined to O(1) by (2.6) and (2.7). This establishes (2.8) and hence completes the proof of Theorem 1.1.

3. Weyl's inequality

With our estimate for $I_{10}(P)$ in hand, the deduction of Theorem 1.2 proceeds exactly as in §10 of Robert and Sargos [12]. We provide some details for the sake of completeness. Let $k \geq 8$, and set

$$K = 2^k$$
 and $H = \frac{2}{3}k!P^{k-4}$.

First of all, by applying the argument of the proof of [7], Lemma 1, one obtains

$$|f_k(\alpha; P)|^{K/16} \ll P^{K/16-1} + P^{K/16-k+3+\varepsilon} \sum_{h=1}^{H} \left| \sum_{n=1}^{N_h} e(a_h n^4 + b_h n^2) \right|,$$
(3.1)

where $a_h = \alpha h$, where the b_h are real numbers depending on α , and where the N_h are integers satisfying $1 \leq N_h \leq P$. By Hölder's inequality, one has

$$\left(\sum_{h=1}^{H} \left| \sum_{n=1}^{N_h} e(a_h n^4 + b_h n^2) \right| \right)^{2s} \ll H^{2s-2} \left| \sum_{h,\mathbf{m}} \xi_h r_h(\mathbf{m}) e(a_h m_4 + b_h m_2) \right|^2, \tag{3.2}$$

where the ξ_h are complex numbers with $|\xi_h| = 1$ and where $r_h(\mathbf{m})$ denotes the number of solutions of the system

$$m_4 = n_1^4 + \dots + n_s^4$$

 $m_2 = n_1^2 + \dots + n_s^2$

with $1 \leq n_i \leq N_h$.

It follows from the double large sieve (see Bombieri and Iwaniec [2], Lemma 2.4) that

$$\left|\sum_{h,\mathbf{m}} \xi_h r_h(\mathbf{m}) e(a_h m_4 + b_h m_2)\right|^2 \ll (1 + P^4)(1 + P^2) \mathcal{N}(P) I_{2s}(P), \quad (3.3)$$

where

$$\mathcal{N}(P) = \operatorname{card}\{\mathbf{h} \in [1, H]^2 : ||a_{h_1} - a_{h_2}|| \le P^{-4} \text{ and } ||b_{h_1} - b_{h_2}|| \le P^{-2}\}.$$

On substituting (3.3) into (3.2), we obtain

$$\sum_{h=1}^{H} \left| \sum_{n=1}^{N_h} e(a_h n^4 + b_h n^2) \right| \ll H^{1-1/s} P^{3/s} \left(\mathcal{N}(P) I_{2s}(P) \right)^{1/(2s)}$$

We now let s = 5, insert this into (3.1), and apply Theorem 1.1 to get

$$|f_k(\alpha; P)|^{K/16} \ll P^{K/16-1} + P^{K/16-k+3+\varepsilon} H^{4/5} P^{3/5} \left(\mathcal{N}(P) I_{10}(P) \right)^{1/10} \\ \ll P^{K/16-1} + P^{K/16+1-k/5+\varepsilon} \mathcal{N}(P)^{1/10}.$$
(3.4)

Finally, by [7], Lemma 6, one has

$$\mathcal{N}(P) \ll H(1+qP^{-4})(1+q^{-1}P^{k-4}) \ll P^{2k-12}(1+qP^{4-k}+q^{-1}P^4)$$

whenever $|\alpha - a/q| \leq q^{-2}$ for some integers a and q with $q \geq 1$ and (a,q) = 1. Hence one deduces from (3.4) that

$$|f_k(\alpha; P)| \ll P^{1-16/K} + P^{1-\frac{16}{5K}+\varepsilon} (q^{-1}P^4 + 1 + qP^{4-k})^{\frac{8}{5K}},$$
(3.5)

and Theorem 1.2 now follows on taking k = 8.

References

- [1] R. C. Baker, *Diophantine inequalities*, Clarendon Press, Oxford, 1986.
- [2] E. Bombieri and H. Iwaniec, On the order of $\zeta(\frac{1}{2} + it)$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) **13** (1986), 449–472.
- [3] _____, Some mean-value theorems for exponential sums, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
 (4) 13 (1986), 473–486.
- [4] H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, 2nd ed., Cambridge University Press, 2005.
- [5] T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105 (1931), 653–662.
- [6] G. H. Hardy and J. E. Littlewood, Some problems of partitio numerorum I: A new solution of Waring's problem, Göttingen Nachrichten (1920), 33–54.
- [7] D. R. Heath-Brown, Weyl's inequality, Hua's inequality, and Waring's problem, J. London Math. Soc. (2) 38 (1988), 216–230.
- [8] L.-K. Hua, An improvement of Vinogradov's mean-value theorem and several applications, Quart. J. Math. Oxford 20 (1949), 48–61.
- [9] _____, Additive theory of prime numbers, A.M.S., Providence, Rhode Island, 1965.
- [10] Yu. V. Linnik, On Weyl's sums, Rec. Math. (Mat. Sbornik) N.S. 12 (1943), 28–39.
- [11] S. T. Parsell, Pairs of additive equations of small degree, Acta Arith. 104 (2002), 345–402.
- [12] O. Robert and P. Sargos, Un théorème de moyenne pour les sommes d'exponentielles. Application à l'inégalité de Weyl, Publ. Inst. Math. (Beograd) N. S. 67 (2000), 14–30.
- [13] P. Salberger, Rational points of bounded height on threefolds, Clay Math. Proc. 7 (2007), 207–216.
- [14] P. Sargos, Un creitére de las dérivée cinquième pour les sommes d'exponentielles, Bull. London Math. Soc. 32 (2000), 398–402.
- [15] W. Y. Tsui and T. D. Wooley, The paucity problem for simultaneous quadratic and biquadratic equations, Math Proc. Cambridge Philos. Soc. 126 (1999), 209–221.
- [16] R. C. Vaughan, The Hardy-Littlewood method, 2nd ed., Cambridge University Press, Cambridge, 1997.
- [17] I. M. Vinogradov, New estimates for Weyl sums, Dokl. Akad. Nauk SSSR 8 (1935), 195–198.
- [18] H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313–352.
- [19] T. D. Wooley, On simultaneous additive equations II, J. Reine Angew. Math. 419 (1991), 141–198.
- [20] _____, On Vinogradov's mean value theorem, Mathematika **39** (1992), 379–399.
- [21] _____, New estimates for Weyl sums, Quart. J. Math. Oxford (2) 46 (1995), 119–127.
- [22] _____, The asymptotic formula in Waring's problem, Internat. Math. Res. Notices (2011), in press.
- [23] _____, Vinogradov's mean value theorem via efficient congruencing, Ann. of Math. (2), to appear.

DEPARTMENT OF MATHEMATICS, WEST CHESTER UNIVERSITY, 25 UNIVERSITY AVE., WEST CHESTER, PA 19383, U.S.A., sparsell@wcupa.edu