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Abstract. We establish a new bound for the number of solutions of a pair of sym-
metric diophantine equations, one quartic and one quadratic, in ten variables. This
estimate is then used to deduce a modest refinement of Weyl’s inequality for eighth
powers, which improves on an earlier result of Robert and Sargos.

1. Introduction

Estimates for exponential sums play a prominent role in analytic number theory, and
in particular the sum over kth powers defined by

fk(α;P ) =
∑

1≤x≤P

e(αxk), (1.1)

where e(z) = e2πiz, is central to the study of many diophantine problems. The starting
point for investigations along these lines is the celebrated work of Weyl [18] on uniform
distribution, which leads to upper bounds for fk(α;P ) that depend on the nature of
rational approximations to α. Specifically, Weyl’s inequality states that if |α−a/q| ≤ q−2

for some integers a and q with q ≥ 1 and (a, q) = 1 then one has

fk(α;P ) ≪ P 1+ε(q−1 + P−1 + qP−k)2
1−k

. (1.2)

Thus in particular if P ≪ q ≪ P k−1 then one obtains fk(α;P ) ≪ P 1−21−k+ε, and this
provides one of the key ingredients for handling the minor arcs in the method devised
by Hardy and Littlewood [6] for applications such as Waring’s problem. The strategy
for proving (1.2), known as Weyl differencing, involves successive squaring of |fk(α;P )|
to reduce the degree of the monomial xk. After k− 1 applications of this process, one is
left with a linear polynomial, and the resulting innermost summation is geometric.

For larger k, better results can be obtained by an approach based on Vinogradov’s
mean value theorem [17]. Following refinements by Linnik [10], Hua [8], Wooley [20],
[21], and others, one can replace 21−k in (1.2) by an exponent σ(k) satisfying σ(k)−1 ∼
3
2
k2 log k (see [21], Theorem 1). For a more comprehensive account of the methods of

Weyl and Vinogradov and their applications to diophantine problems, the interested
reader is referred to the books of Baker [1], Davenport [4], and Vaughan [16].

Heath-Brown [7] has developed an alternative approach, which leads to superior esti-
mates when k is of moderate size and α has a rational approximations with denominator
lying in an intermediate range. Here a symmetric form of Weyl differencing is employed
k−3 times to relate estimates for the exponential sum (1.1) to mean values associated to
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a system of two symmetric diagonal equations, one cubic and one linear. This approach
leads to the estimate

fk(α;P ) ≪ P 1−8
3
2−k+ε(P 3q−1 + 1 + qP 3−k)

4
3
2−k

, (1.3)

under the same conditions preceding (1.2), whenever k ≥ 6. This conclusion is superior
to Weyl’s inequality whenever P 5/2+δ ≪ q ≪ P k−5/2−δ for some δ > 0.

More recently, Robert and Sargos [12] adapted Heath-Brown’s approach, but with
k − 4 symmetric differences, to relate (1.1) to mean values of the exponential sum

F (β, γ) = F (β, γ;P ) =
∑

1≤x≤P

e(βx2 + γx4). (1.4)

Define

I2s(P ) =

∫ 1

0

∫ 1

0

|F (β, γ)|2s dβ dγ, (1.5)

and observe that by orthogonality I2s(P ) counts the number of solutions of the system
of diophantine equations

x4
1 + · · ·+ x4

s = y41 + · · ·+ y4s

x2
1 + · · ·+ x2

s = y21 + · · ·+ y2s
(1.6)

with x,y ∈ [1, P ]s. As a consequence of a more general mean value estimate, Robert
and Sargos showed that I10(P ) ≪ P 49/8+ε and used this to deduce (see [12], Theorem 4
and Lemma 7) that

fk(α;P ) ≪ P 1−3·2−k+ε(P 4q−1 + 1 + qP 4−k)
8
5
2−k

, (1.7)

under the hypotheses preceding (1.2), whenever k ≥ 8. This conclusion is superior to
Heath-Brown’s estimate (1.3) whenever P 91/24+δ ≪ q ≪ P k−91/24−δ for some δ > 0.

Very recently, Wooley [23] has obtained

fk(α;P ) ≪ P 1+ε(q−1 + P−1 + qP−k)
1

2k(k−1) , (1.8)

which is superior to (1.2) for k ≥ 8 and superior to both (1.3) and (1.7) for k ≥ 9.
The bound (1.8) is a consequence of the new efficient congruencing technique developed
in [23], which for the first time removes the factor of log k in estimates associated to
Vinogradov’s mean value theorem.

The purpose of this paper is to provide a slight refinement of (1.7) when k = 8,
and we accomplish this by establishing an improved mean value estimate that may
be of independent interest. In Section 2, we prove the following using fairly classical
arguments.

Theorem 1.1. One has
I10(P ) ≪ P 6+ε.

In view of the diagonal solutions to (1.6), one clearly has I10(P ) ≫ P 5. We also
mention that the system (1.6) has been studied in detail in the case s = 3. For example,
Salberger [13], improving on earlier work of Tsui and Wooley [15], showed that

I6(P ) = 6P 3 +O(P 5/2+ε).
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Robert and Sargos [12], proceeding in a manner similar to Bombieri and Iwaniec [3],
actually estimated the more general mean values

I2s(P ;λ) =

∫ λ

0

∫ 1

0

|F (β, γ)|2sdβ dγ,

which may be interpreted in terms of the number of solutions of a system of diophantine
inequalities. By applying a version of van der Corput’s B Process, together with a third
derivative estimate, they showed that

I2s(P ;λ) ≪ λP µs+ε + P 2s−6+ε,

where µ3 = 3, µ4 = 9/2, and µ5 = 49/8. The above estimate for I6(P ;λ) was then ap-
plied by Sargos [14] to obtain an exponential sum estimate based on the fifth derivative.
It would appear that our new estimate for I10(P ; 1) does not provide any improvements
in applications of this sort, but our result could potentially be relevant to work on
simultaneous additive equations of the type studied in [11].

As a consequence of Theorem 1.1, we are able to further improve on Weyl’s inequality
for eighth powers, albeit for a restricted set of α. We prove in Section 3 that if k ≥ 8
and the conditions preceding (1.2) hold then one has

fk(α;P ) ≪ P 1−16
5
2−k+ε(P 4q−1 + 1 + qP 4−k)

8
5
2−k

, (1.9)

which is superior to (1.7) for all α and to (1.3) whenever P 11/3+δ ≪ q ≪ P k−11/3−δ

for some δ > 0. However, it transpires that Wooley’s estimate (1.8) is superior to ours
for all α when k ≥ 9, and hence the new content of (1.9) may be summarized in the
following modest refinement for eighth powers.

Theorem 1.2. If |α − a/q| ≤ q−2 for some integers a and q with q ≥ 1 and (a, q) = 1,
then one has

f8(α;P ) ≪ P 79/80+ε(P 4q−1 + 1 + qP−4)1/160.

For comparison, the result (1.7) of Robert and Sargos yields the same estimate with the
exponent 79/80 = 0.9875 replaced by 253/256 = 0.98828125. Moreover, our estimate
is superior to (1.2) whenever P 13/4+δ ≪ q ≪ P 19/4−δ, to (1.3) whenever P 11/3+δ ≪
q ≪ P 13/3−δ and to (1.8) whenever P 24/7+δ ≪ q ≪ P 32/7−δ. We are not aware of any
immediate applications of our new estimate to diophantine problems. In particular, the
bound

G̃(8) ≤ 117

for the number of variables required to obtain the asymptotic formula in Waring’s prob-
lem, recently established by Wooley [22], is not susceptible to improvement via Theorem
1.2. In this case, the strength of the mean value estimates stemming from [23] is so great
that the quality of the Weyl-type inequalities becomes less significant.

The author is grateful to the Brigham Young University Department of Mathematics
for its generous hospitality during his visit as part of the 2010–2011 Special Year in
Number Theory. In particular, he wishes to thank Roger Baker for motivating this work
and for many valuable conversations and suggestions. Finally, the author thanks the
referee for useful comments.
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2. The tenth moment estimate

Our goal in this section is to establish Theorem 1.1, and we begin by employing
a strategy reminiscent of Hua [9], Chapter 5. By symmetric Weyl differencing as in
Heath-Brown [7], we have

|F (β, γ)|2 =
∑

|h|<P/2

∑
z∈I(h)

e(4zhβ + (8z3h+ 8zh3)γ),

where I(h) is a subinterval of [1, P ]. An application of Cauchy’s inequality followed by
a second difference then yields

|F (β, γ)|4 ≤ P
∑

|h|<P/2

∣∣∣∣ ∑
z∈I(h)

e(4zhβ + (8z3h+ 8zh3)γ)

∣∣∣∣2
= P

∑
|h|,|g|<P/2

∑
z∈I(h,g)

e(8hgβ + 16hg(3z2 + g2 + h2)γ),

where I(h, g) is a subinterval of [1, P ].
It therefore follows that I10(P ) ≤ PV(P ), where V(P ) denotes the number of integral

solutions of the system

16hg(3z2 + g2 + h2) =
3∑

i=1

(x4
i − y4i )

8hg =
3∑

i=1

(x2
i − y2i )

(2.1)

with

|h|, |g| < P/2, 1 ≤ z ≤ P, and x,y ∈ [1, P ]3. (2.2)

Then one has

I10(P ) ≤ P (V0(P ) + V1(P )), (2.3)

where V0(P ) denotes the number of solutions of (2.1) satisfying (2.2) with hg = 0, and
where V1(P ) denotes the number of solutions with hg ̸= 0. First consider a solution
counted by V0(P ). After fixing one of the O(P 2) possible choices for h, g, and z, it
follows from Wooley [19], Theorem 4.1, that the number of possibilities for x and y is
O(P 3+ε), and we therefore conclude that

V0(P ) ≪ P 5+ε. (2.4)

We now consider solutions counted by V1(P ). We find it convenient to introduce the
notation

Sj(x,y) = yj1 + yj2 + yj3 − xj
2 − xj

3 (j = 2, 4)

and to further classify solutions according to whether

S2(x,y)
2 − S4(x,y) = 0. (2.5)

Let V2(P ) denote the number of solutions counted by V1(P ) for which (2.5) does not
hold, and write V3(P ) for the number of solutions in which (2.5) does hold. We first
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consider a solution counted by V2(P ). Given any of the O(P 5) choices for x2, x3, y1, y2,
and y3 not satisfying (2.5), the second equation in (2.1) yields

x2
1 = 8hg + S2(x,y), (2.6)

and upon substituting this into the first equation of (2.1) we discover that the variables
h, g, and z must satisfy

16hg(3z2 + g2 + h2 − 4hg − S2(x,y)) = S2(x,y)
2 − S4(x,y). (2.7)

It follows from a standard estimate for the divisor function that h and g are now de-
termined to O(P ε), and z is then determined to O(1) as a solution of a non-trivial
polynomial equation. We therefore have V2(P ) ≪ P 5+ε, so in view of (2.3) and (2.4)
the theorem will follow upon establishing the estimate

V3(P ) ≪ P 5+ε. (2.8)

To establish (2.8), we relate (2.5) to the representation of integers by binary quadratic
forms. It is easy to see that (2.5) implies

x4
2 + x4

3 + x2
2x

2
3 − A(y)(x2

2 + x2
3) +B(y) = 0, (2.9)

where

A(y) = y21 + y22 + y23 and B(y) = y21y
2
2 + y21y

2
3 + y22y

2
3.

We now set X2 = x2
2 and X3 = x2

3, and make the change of variable X1 = X2 +
1
2
X3.

Then (2.9) becomes

X2
1 +

3
4
X2

3 − A(y)(X1 +
1
2
X3) +B(y) = 0. (2.10)

Next we complete the square to obtain

(X1 − 1
2
A(y))2 + 3

4
(X3 − 1

3
A(y))2 = 1

3
A(y)2 −B(y),

from which it follows easily that

3(2X1 − A(y))2 + (3X3 − A(y))2 = 2(y21 − y22)
2 + 2(y21 − y23)

2 + 2(y22 − y23)
2. (2.11)

Clearly, the right-hand side of (2.11) is zero if any only if y1 = y2 = y3. In this case,
we trivially have O(P ) choices for y and O(P 2) choices for X1 and X3. Moreover, for a
choice of y with y1y2y3 ̸= 0 we know from Estermann [5] that the number of possibilities
for X1 and X3 is O(P ε). Thus in any case the number of solutions to (2.11) in the
variables X1, X3, y1, y2, and y3 is O(P 3+ε), and this also determines x2 and x3. The
values of h and g may be assigned in O(P 2) ways, and the values of x1 and z are now
determined to O(1) by (2.6) and (2.7). This establishes (2.8) and hence completes the
proof of Theorem 1.1.

3. Weyl’s inequality

With our estimate for I10(P ) in hand, the deduction of Theorem 1.2 proceeds exactly
as in §10 of Robert and Sargos [12]. We provide some details for the sake of completeness.
Let k ≥ 8, and set

K = 2k and H = 2
3
k!P k−4.
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First of all, by applying the argument of the proof of [7], Lemma 1, one obtains

|fk(α;P )|K/16 ≪ PK/16−1 + PK/16−k+3+ε

H∑
h=1

∣∣∣∣ Nh∑
n=1

e(ahn
4 + bhn

2)

∣∣∣∣, (3.1)

where ah = αh, where the bh are real numbers depending on α, and where the Nh are
integers satisfying 1 ≤ Nh ≤ P . By Hölder’s inequality, one has( H∑

h=1

∣∣∣∣ Nh∑
n=1

e(ahn
4 + bhn

2)

∣∣∣∣)2s

≪ H2s−2

∣∣∣∣∑
h,m

ξhrh(m)e(ahm4 + bhm2)

∣∣∣∣2, (3.2)

where the ξh are complex numbers with |ξh| = 1 and where rh(m) denotes the number
of solutions of the system

m4 = n4
1 + · · ·+ n4

s

m2 = n2
1 + · · ·+ n2

s

with 1 ≤ ni ≤ Nh.
It follows from the double large sieve (see Bombieri and Iwaniec [2], Lemma 2.4) that∣∣∣∣∑

h,m

ξhrh(m)e(ahm4 + bhm2)

∣∣∣∣2 ≪ (1 + P 4)(1 + P 2)N (P )I2s(P ), (3.3)

where

N (P ) = card{h ∈ [1, H]2 : ||ah1 − ah2 || ≤ P−4 and ||bh1 − bh2 || ≤ P−2}.

On substituting (3.3) into (3.2), we obtain

H∑
h=1

∣∣∣∣ Nh∑
n=1

e(ahn
4 + bhn

2)

∣∣∣∣ ≪ H1−1/sP 3/s
(
N (P )I2s(P )

)1/(2s)
.

We now let s = 5, insert this into (3.1), and apply Theorem 1.1 to get

|fk(α;P )|K/16 ≪ PK/16−1 + PK/16−k+3+εH4/5P 3/5
(
N (P )I10(P )

)1/10
≪ PK/16−1 + PK/16+1−k/5+εN (P )1/10. (3.4)

Finally, by [7], Lemma 6, one has

N (P ) ≪ H(1 + qP−4)(1 + q−1P k−4) ≪ P 2k−12(1 + qP 4−k + q−1P 4)

whenever |α − a/q| ≤ q−2 for some integers a and q with q ≥ 1 and (a, q) = 1. Hence
one deduces from (3.4) that

|fk(α;P )| ≪ P 1−16/K + P 1− 16
5K

+ε
(
q−1P 4 + 1 + qP 4−k)

8
5K , (3.5)

and Theorem 1.2 now follows on taking k = 8.
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[14] P. Sargos, Un creitére de las dérivée cinquième pour les sommes d’exponentielles, Bull. London

Math. Soc. 32 (2000), 398–402.
[15] W. Y. Tsui and T. D. Wooley, The paucity problem for simultaneous quadratic and biquadratic

equations, Math Proc. Cambridge Philos. Soc. 126 (1999), 209–221.
[16] R. C. Vaughan, The Hardy-Littlewood method, 2nd ed., Cambridge University Press, Cambridge,

1997.
[17] I. M. Vinogradov, New estimates for Weyl sums, Dokl. Akad. Nauk SSSR 8 (1935), 195–198.
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