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A B S T R A C T

Background: Substance use disorder (SUD) patients with a history of trauma exhibit poorer treatment outcome,
greater functional impairment and higher risk for relapse. Endorsement of prior trauma has, in several SUD
populations, been linked to abnormal functional connectivity (FC) during task-based studies. We examined
amygdala FC in the resting state (RS), testing for differences between cocaine patients with and without prior
trauma.
Methods: Patients with cocaine use disorder (CUD; n= 34) were stabilized in an inpatient setting prior to a
BOLD fMRI scan. Responses to Addiction Severity Index and the Mini-International Neuropsychiatric Interview
were used to characterize the No-Trauma (n= 16) and Trauma (n = 18) groups. Seed-based RSFC was con-
ducted using the right and left amygdala as regions of interest. Examination of amygdala RSFC was restricted to
an a priori anatomical mask that incorporated nodes of the limbic-striatal motivational network.
Results: RSFC was compared for the Trauma versus No-Trauma groups. The Trauma group evidenced greater
connectivity between the amygdala and the a priori limbic-striatal mask. Peaks within the statistically significant
limbic-striatal mask included the amygdala, putamen, pallidum, caudate, thalamus, insula, hippocampus/
parahippocampus, and brain stem.
Conclusions: Results suggest that cocaine patients with prior trauma (versus without) have heightened com-
munication within nodes of the motivational network, even at rest. To our knowledge, this is the first fMRI study
to examine amygdala RSFC among those with CUD and trauma history. Heightened RSFC intralimbic con-
nectivity for the Trauma group may reflect a relapse-relevant brain vulnerability and a novel treatment target for
this clinically-challenging population.

1. Introduction

Drug addiction is a vital public health concern that exacts a tre-
mendous toll on the brain (Koob and Volkow, 2010; Volkow and Li,
2005). Interestingly, even when patients carry the same substance use
disorder (SUD) diagnosis, there is much heterogeneity. Some in-
dividuals experience a lifelong struggle with addiction while others
respond favorably to treatment. Elucidating the individual differences
that underlie such striking variance is key to advancing treatment ef-
forts. One critical factor to consider in understanding individual dif-
ferences in SUD is prior trauma exposure, which is very common in
addiction. As many as 60–90% of treatment seeking SUD patients have

experienced a traumatic event (Brady et al., 2004; Farley et al., 2004;
Jacobsen et al., 2001; Wu et al., 2010). Co-occurring SUDs and trauma
associate with a number of functional impairments, greater rates of
relapse, higher treatment costs, poorer outcomes (social functioning,
treatment adherence, and drug use) than for those with SUD alone
(Back et al., 2000; Driessen et al., 2008; Farley et al., 2004; Gil-Rivas
et al., 2009; Norman et al., 2007; Ouimette et al., 2006; Sacks et al.,
2008; Tarrier and Gregg, 2004; Tate et al., 2007; Young et al., 2005).

1.1. Trauma exposure and brain function

Certain brain regions are especially sensitive to the stress of trauma
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exposure. Neuroimaging research links traumatic stress to hyperactivity
in the amygdala, a structure responsible for processing emotions, fear
learning, and orchestrating reactions to environmental threats (Brown
et al., 2014; Lanius et al., 2006). In addition to mediating fear re-
sponses, the amygdala processes motivational salience underlying re-
ward relevant goals related to appetitive stimuli (Cunningham and
Brosch, 2012). Broadly speaking, impairments observed following
trauma exposure have been reflected in amygdala hyperactivity to
biologically relevant motivational stimuli (i.e., appetitive or aversive).

1.2. Addiction and brain function

Parallel research within the field of addiction also underscores the
importance of an over-responsive motivational neural network. For
example, findings published by our own (Childress et al., 1999;
Franklin et al., 2007; Langleben et al., 2008; Wetherill et al., 2014;
Young et al., 2014) and other research laboratories (Chase et al., 2011;
Kühn and Gallinat, 2011) examining addiction, have demonstrated that
drug cues activate motivational-reward neural circuitry, including the
amygdala. Accumulating research suggests that chronic stimulant use
leads to mesolimbic hyper-responsiveness to drugs and drug cues as
well as other evocative (appetitive and aversive) stimuli (Kalivas and
Volkow, 2005; Koob and Volkow, 2010; Robinson and Berridge, 1993,
2008; Volkow et al., 2008; Wyvell and Berridge, 2001). The increased
response to acute phasic stimuli (e.g., drugs, cues) may actually occur in
the context of an overall down-regulation or tonic decrease of the
motivational circuit (Hommer et al., 2011; Volkow et al., 2010, 2011).

1.3. Motivational circuitry: trauma and drugs of abuse

Alterations in the mesolimbic brain reward circuitry among chronic
drug users (Goeders, 2003; Sinha, 2008; See and Waters, 2010; Bossert
et al., 2013) and among trauma-exposed individuals (D'Angio et al.,
1987; Sorg and Kalivas, 1991; Rougé-Pont et al., 1993) have striking
parallels. Both animal (Packard, 2009; Packard and Goodman, 2012)
and human (Schwabe and Wolf, 2009) studies demonstrate that acute
stress causes the brain to focus on the most salient and proximal mo-
tivational stimulus (the stressor) − shifting attention and resources
away from other flexible goal-directed behavior (Arnsten, 2009;
Hermans et al., 2014). These findings have parallels in SUD popula-
tions; for example, cocaine patients exposed to stress show greater at-
tentional bias toward drug cues (Tull et al., 2011), a highly salient
motivational stimulus. Thus, exposure to trauma triggers activity within
mesolimbic motivational circuits, enhancing the response to both
aversive and appetitive stimuli (Hermans et al., 2014). Though these
prior studies have used a “phasic” cue to probe the motivational cir-
cuitry, the current study complements this research by examining the
“tonic” resting-state of this circuitry − without the use of an explicit
cue.

Although prior studies have used positron emission tomography
(PET) to examine resting regional perfusion in PTSD Veterans with
cocaine and alcohol abuse history, the earlier technology did not permit
assessment of dynamic functional connectivity among nodes of moti-
vational neurocircuitry. These studies (Semple et al., 1996, 2000) de-
tected increased resting perfusion in patients versus controls in the
amygdala, but the difference was no longer significant after controlling
for multiple comparisons. These early PET studies highlight the need for
formal examination of amygdala resting-state functional connectivity
(RSFC) with the new technology of BOLD fMRI.

1.4. Resting-State functional connectivity (RSFC)

Prior neuroscience research examining trauma exposure and drug
addiction has often used provocation paradigms (e.g., exposure to ap-
petitive drug or aversive fear stimuli). However, recent research high-
lights resting-state functional connectivity (RSFC) as a unique and

complementary tool for understanding brain vulnerability. RSFC mea-
sures the strength of the temporal correlation of low-frequency blood
oxygen level-dependent (BOLD) fluctuations between discrete anato-
mical regions (Biswal et al., 1995; Gusnard and Raichle, 2001) when
individuals are not engaged in cognitively demanding tasks (e.g., in-
structed to close eyes and not think of anything in particular). RSFC
confers an enhanced signal-to-noise ratio over traditional task-based
designs, and may circumvent potential limitations of task-based studies
(e.g., practice effects; Fox and Greicius, 2010). Importantly, RSFC can
be used to distinguish distinctive brain states (McCabe and Mishor,
2011) and to distinguish individuals with and without psychiatric dis-
orders, including SUDs (Sutherland et al., 2012; Whitfield-Gabrieli and
Ford, 2012)

Previous RSFC studies have linked amygdala connectivity to prior
trauma exposure and stress (Patel et al., 2012), with enhanced func-
tional coupling of the amygdala with regions of the insula and anterior
cingulate cortex (Brown et al., 2014; Sripada et al., 2012; Van Marle
et al., 2010). Cocaine use disorder (CUD) patients also evidence
“heightened coupling” of RSFC signatures, with the amygdala ex-
hibiting stronger connectivity with nodes of the motivational circuitry
including the caudate, putamen, nucleus accumbens, and insula
(Contreras-Rodríguez et al., 2016; Gu et al., 2010; Konova et al., 2015).
Though RSFC has promise for characterizing dysfunctional neural cir-
cuitry in addiction, the findings across CUD studies are not always
consistent (Ma et al., 2015). Some of the inconsistences may be due to
important historical variables such as trauma exposure, a relatively
understudied variable in the context of brain imaging in CUD. Given the
high frequency of trauma exposure among those with CUD, we plan to
test RSFC in CUD patients with and without trauma. We hypothesize
that CUD patients with prior trauma (versus those without) will evi-
dence increased RSFC between the amygdala and nodes of the meso-
limbic motivational circuitry (i.e., amygdala, caudate nucleus, pu-
tamen, pallidum, and insula). To our knowledge, this has not been
previously examined.

2. Methods

2.1. Participants

Participants were 34 treatment-seeking, cocaine-dependent men,
between 34 and 60 years of age, who met DSM-IV criteria for cocaine
dependence, described smoking as their primary route of cocaine-crack
administration, and reported using cocaine on at least 8 of the 30 days
before screening (See Table 1 for demographics). Participants were
recruited through advertisements in local media and were part of a
larger study examining brain and behavioral vulnerabilities associated
with addiction. After completing a detailed telephone screen, partici-
pants provided informed consent, were medically screened, and com-
pleted psychological assessment measures.

Exclusion criteria included: contraindications for fMRI (e.g., metal
in the body, claustrophobia), use of medications affecting central do-
paminergic neurotransmission, history of psychosis, seizures, or organic
brain syndrome unrelated to cocaine use, clinically significant cardio-
vascular, hematologic, hepatic, renal, neurological, or endocrine ab-
normalities, history of head trauma or loss of consciousness for more
than 3 min. Psychiatric diagnoses were based on the Mini International
Neuropsychiatric Interview (MINI; Sheehan et al., 1998) and those di-
agnosed with comorbid Axis I disorders were excluded, with exception
for dependence on nicotine, marijuana, or alcohol not requiring med-
ical detoxification. Participants meeting diagnostic criteria for depres-
sion were not excluded if their diagnosis was linked solely to periods of
cocaine use/cessation. This study adhered to the Declaration of Helsinki
and was approved by the University of Pennsylvania Institutional Re-
view Board.
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2.2. Study design

Participants were stabilized in a supervised drug-free residential
stabilization unit for 7–10 days prior to participating in a one-hour
fMRI scanning session involving several experimental tasks including a
BOLD resting state scan, which preceded the behavioral tasks. This
controlled setting eliminates the impact of cocaine intoxication and
minimizes the contribution of cessation symptoms to study measures.

2.3. Measures

Cocaine and other illicit drug use for the past 30 days were assessed
with the Addiction Severity Index (ASI; McLellan et al., 1992) and the
Timeline Followback interview (TLFB; Sobell and Sobell, 1992). Presence
of psychiatric diagnosis was based on results from the MINI (Sheehan
et al., 1998). To assess for recent anxiety and depression, additional
measures included the Beck Anxiety Inventory (BAI; Leyfer et al., 2006),
the Beck et al., 1996 Beck Depression Inventory (BDI; Beck, Steer, and
Brown, 1996), and the clinician administered, Hamilton Rating Scale for
Depression (HAM-D; Miller et al., 1985). The PTSD Checklist for Civi-
lians (PCL-C; Weathers et al., 1993) was also administered to char-
acterize symptoms that may accompany trauma exposure as a potential
clinical validator for the Trauma subgroup. Participants completed
measures during their initial screening assessment (PCL-C, MINI, ASI)
and their baseline visit (BAI, BDI, HAM-D, TLFB).

2.4. fMRI acquisition

Functional MR imaging was conducted on a 3-T whole-body scanner
(Siemens Tim Trio, Erlangen, Germany). High-resolution structural
images were acquired for spatial brain normalization using a 3D mag-
netization prepared rapid gradient echo (MPRAGE) sequence (TR/TE/
TI = 1620/3/950 ms). Images for the resting-scan were acquired
during a 6-min scan using a gradient-echo-planar-imaging sequence
(TR/TE = 2s/30 ms, FOV = 220 × 220 mm2, matrix = 64 × 64, slice
thickness = 4.5 mm, 150 images were acquired). Participants were
asked to remain still with their eyes open and to not think about any-
thing in particular during this scan.

Data preprocessing was carried out using Data Processing Assistant
for Resting-State fMRI Basic Edition (DPARSF) and Data Processing and
Analysis of Brain Imaging (REST) toolbox, based on SPM8 (http://
www.fil.ion.ucl.ac.uk/spm) run under Matlab R2015 environment. In
this paper, we followed the standard preprocessing pipeline still ac-
counting for motion related artifacts. Each participants’ images were
slice-time corrected, realigned, coregistered to high-resolution struc-
tural images, and subsequently normalized to MNI standard space and
smoothed with the FWHM kernel of 6 mm. Summary motion statistics
for each subject were examined and confirmed the motion was below
2 mm in both directions. In addressing the head motion concerns, we
regressed out Friston 24 head motion parameters which includes six
head motion estimates from current time point (Rt = [X Y Z pitch roll

Table 1
Demographics and Clinical Measures.

Characteristics Entire Sample Value Trauma Value No-Trauma Value Differences

Age (year), n 34 18 16 ns.
Mean (SD) 47.20(6.70) 47.38 47.00
Range 34–60 34–60 34–59

Years of Education, n 34 18 16 ns.
Mean (SD) 12.87 (1.86) 12.78 (2.13) 12.96 (1.57)
Range 8.0–16.0 8.0–16.0 10–16

Race/ethnicity, n (%) 34 18 16 ns.
White non-Hispanic 2 (5.9%) 0 (0%) 2 (12.5%
African American 32 (94.1%) 18 (100%) 14 (87.5%)

Psychiatric Diagnosis, n (%) 34 18 16
MDD, Current 6 (17.6%) 6 (33.3%) 0 (0%) *

MDD, Recurrent 4 (11.8%) 4 (22.2%) 0 (0%) *

MDD, Recurrent Remitted 2 (5.9%) 1 (5.6%) 1 (6.3%) ns.
Cannabis Dependence 4 (11.8%) 2 (11.1%) 2 (12.5%) ns.

Years of Lifetime Use, n 34 18 16 ns.
Mean (SD) 19.36 (9.76) 21.72 (9.58) 16.72 (9.56)
Range 2.0–38.0 5.0–38.0 2.0–30.0

Days Used (in past 30), n 34 18 16 ns.
Mean (SD) 18.80 (7.92) 20.91 (5.63) 16.44 (9.52)
Range 1.5–30 10.0–30.0 1.5–29.0

Days Since Last Use, n 31 16 15 ns.
Mean (SD) 4.03 (3.96) 2.88 (1.85) 5.27 (5.17)
Range 1–22 1–6 1–22

Total PCL-C Score, n 34 18 16 **

Mean (SD) 34.29 (16.07) 42.50 (16.11) 25.06 (10.13)
Range 17–69 17–69 17–48

Total HAM-D Score, n 34 18 16 ns.
Mean (SD) 6.62 (5.87) 8.06 (5.83) 5.00 (5.62)
Range 0–20 0–20 0–15

Total BDI Score, n 32 16 16 ns.
Mean (SD) 9.72 (9.09) 10.81 (10.55) 8.63 (7.56)
Range 0–31 0–31 0–23

Total BAI Score, n 32 16 16 ns.
Mean (SD) 4.78 (5.72) 6.63 (6.70) 2.94 (3.95)
Range 0–27 0–27 0–11

Note. All group differences were assessed using independent samples T-Tests and Chi-Square.
MDD =Major Depressive Disorder; PCL-C = PTSD symptom checklist; HAM-A = Hamilton Rating Scale for Depression; BDI = Beck Depression Inventory; BAI = Beck Anxiety
Inventory.
No group differences were observed for all group comparisons with exception for PCL-C scores, which were expected to differ between groups.
ns. = none significant differences.
*p < 0.05.
**p < 0.01.
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yaw]), six head motion parameters from immediately preceding time
point (Rt-1) and their corresponding squares(Rt

2, Rt-1
2; Yan et al.,

2013a,b). Given the concerns of the field (Power et al., 2012; Van Dijk
et al., 2012; Satterthwaite et al., 2012; Yan et al., 2013a,b) about the
impact of micro motion (as small as 0.2 mm) on resting functional
connectivity, we additionally calculated mean Frame-by-Frame head
displacement (FD; Power et al., 2012) to compare the two groups and
for subsequent use as a nuisance covariate at the second level analysis
(see below). Images were then detrended to remove linear trends due to
scanner drift; band-pass filtered (0.01-0.1 Hz) to remove scanner and
cardio-respiratory noise. Tissue based signals such as white matter, CSF
and global signal were used as nuisance regressors to remove the
sources of spurious variance and their temporal derivatives were also
removed from the data through linear regression. Smoothed normalized
images were entered into seed-based region of interest (ROI) analysis
with amygdalae as seeds. A cross-correlation map was constructed by
doing voxel-wise correlation between the temporal signals from both
the right and left amygdala and each voxel in the brain. The right and
left amygdalae were selected as ROIs (AAL atlas; Maldjian et al., 2003,
2004) based on prior work implicating their involvement in the pa-
thophysiology of stress, trauma exposure, and addiction. We examined
connectivity for each side of the amygdala separately, as the human
literature has documented differences in anatomical connections for the
left and right amygdala. The resulting correlation map from each par-
ticipant was converted to Z map using Fisher’s r-to-z transformation in
order to improve the normality of the correlation coefficients (Press
et al., 1992; Lowe et al., 1998). The Z maps were then analyzed in a
random-effects model in SPM8 to reveal any differences in RSFC be-
tween the Trauma and No-Trauma subgroups (see below for trauma-
status determination). In all the group analysis, mean FD was entered as
a nuisance variable to control for participants’ head motion.

Based on prior work (Regier et al., 2016), we further constrained the
voxels that we queried in relation to the amygdala, based on a mask
that includes mesolimbic regions (amygdala, ventral tegmental area/
midbrain, ventral striatum, caudal orbitofrontal cortex), and three
other addiction-relevant regions including the insula (Naqvi and
Bechara, 2010), dorsal striatum (Everitt and Robbins, 2013), and tha-
lamus (Asensio et al., 2010). The mask including our a priori ROIs, was
created using Harvard-Oxford Cortical Structural Atlas (FMRI of the
Brain [FMRIB] Software Library, Oxford Centre for FMIRB) with a
probability threshold ranging between 10 and 25%. For the purposes of
the current paper, this limbic mask is treated as the unit of analysis (a
single region of interest). Individual sub-group maps were thresholded
at FWE corrected, p < 0.05, and the group contrast maps are cluster
corrected at p < 0.05 with 425 contiguous voxels based on the re-
cently debugged version of 3dClustSim using autocorrelation function
(ACF) option in AFNI_17.2.05. ACF was calculated by running
3dFWHMx on the residual image at group level.

2.5. Trauma versus No-Trauma subgroups

Of the 34 participants, 18 were designated to the “Trauma” group
while 16 were designated as the “No-Trauma” group. Determination of
trauma status was based on participants’ response to two measures. The
first was the ASI supplement − PTSD questionnaire (McLellan et al.,
1992), which probes whether one has ‘ever experienced something so
frightening, horrible, or upsetting that others rarely go through’. Prior
studies have used the ASI to measure trauma exposure (Najavits et al.,
1998; Ouimette et al., 2000; Rosen et al., 2002; Pirard et al., 2005;
Charney et al., 2007). Trauma status was further queried by partici-
pants’ responses to the clinician administered MINI (Sheehan et al.,
1998), which assesses for trauma exposure as a preliminary criterion for
PTSD diagnosis. All participants in the Trauma group endorsed trauma
exposure on both the MINI and ASI. It is worth noting that, while the
parent study excluded Axis-I diagnosis including PTSD, Trauma parti-
cipants in this study endorsed trauma exposure but did not meet criteria

for PTSD.

3. Results

3.1. Group comparisons: behavioral assessments

3.1.1. Corroboration of trauma status
Importantly, individuals’ PTSD symptom severity, assessed with

PCL-C scores, was also examined for a potential corroboration of the
trauma split. The Trauma group endorsed prior trauma and had ele-
vated scores on the PCL-C (M = 42.50, SD = 16.11), relative to the No-
Trauma group (M= 25.06, SD = 10.13; (t(32) = −3.72, p = 0.001),
as would be expected (see Table 1). Scores on the PCL-C range from 17
to 85 with higher scores reflecting increased PTSD symptom severity.

3.1.2. Demographic comparisons
Trauma and No-Trauma groups did not differ on any demographic

measures, clinician administered measures, self-report measures, or
substance use severity measures, with exception for diagnosis of Major
Depressive Disorder (MDD). Significant group differences were ob-
served for diagnosis of MDD, Current (χ(1) = 6.476, p = 0.011) and
Recurrent (χ(1) = 4.030, p = 0.045) with the trauma group eviden-
cing greater prevalence of MDD diagnoses.

3.2. Group comparisons: resting-State functional connectivity (RSFC)

Our analyses focused on an intralimbic mask in order to limit our
observations to interconnected nodes within our a priori limbic-striatal
hypotheses. While both the No-Trauma and Trauma groups exhibited
positive connectivity between amygdala and interconnected nodes
within our limbic-striatal mask (See Fig. 1, top panel), formal statistical
comparison revealed significant differences in connectivity between the
groups (See Fig. 1, bottom panel). As shown, the Trauma group evi-
denced significantly greater positive connectivity between the amyg-
dala and limbic-striatal regions (threshold as detailed above in
Methods). For the left amygdala, peaks within the limbic-striatal mask
(See Fig. 1, bottom panel and Table 2) included amygdala, putamen,
caudate, pallidum, insula, hippocampus, and brain stem (not shown).
For the right amygdala, peaks within the limbic-striatal mask included
these same regions (See Fig. 1, bottom panel and Table 2) with ex-
ception for the brain stem and the addition of thalamus and para-
hippocampus. There was an absence of inverse connectivity patterns
between the amygdala and any regions included in the limbic-striatal
mask.

4. Discussion

4.1. Summary of findings

RSFC maps of the Trauma and No-Trauma groups evidenced similar
overall patterns of amygdala connectivity with limbic-striatal regions.
However, our findings indicate that CUD patients with trauma, relative
to no trauma, evidenced enhanced amygdala RSFC with limbic-striatal
regions. To our knowledge, this study is the first to examine RSFC
among those with CUD and trauma history. Data presented here may
help to identify a vulnerability phenotype, as trauma-exposed SUD
patients have a heightened communication among interconnected
motivational nodes that is observable, even at rest. This heightened
state of intra-limbic connectivity might predispose one to being more
easily triggered by drug-related cues, thus leading to relapse.

The current results, finding differences within CUD patients (i.e.,
between Trauma and No-Trauma subgroups) complement the literature
examining amygdala RSFC and SUDs. For example, amygdala RSFC has
shown the ability to distinguish heroin dependent patients (Ma et al.,
2010) and CUD patients (Gu et al., 2010) from healthy controls. Fur-
ther, amygdala RSFC has shown, within CUD patients, the ability to
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4.2. Interpretation of findings

Increased connectivity between the amygdala and limbic-striatal
structures in the resting state likely reflects an underlying dysfunction
that may also manifest during tasks that make demands on these same
circuits. Indeed, recent data from our lab (Regier et al., 2016), suggests
that CUD individuals with prior adversity (e.g., prior sexual, emotional,
and physical abuse) have an enhanced response to evocative cues (i.e.,
cocaine, sexual, and aversive) in mesolimbic motivational brain cir-
cuitry. Parallel results have been documented in aversively-motivated
disorders (i.e., PTSD, generalized anxiety), in which there is enhanced
amygdala reactivity to evocative cues (Patel et al., 2012; Shin and
Liberzon, 2010). The impact of prior adversity (trauma or abuse) on
both resting connectivity and task-related measures underscores the
potential relevance of these brain measures as biomarkers of clinical
vulnerability.

As with any human studies examining the impact of trauma history,
the current findings are correlational. However, whether the current
results reflect predisposing factors, the impact of prior trauma, or very
likely, an interaction, they have both theoretical and practical value,
underscoring the importance of within group heterogeneity on the
neural substrates associated with addiction.

4.3. Limitations and future directions

One strength of this study is the demonstration of differences in
amygdala-based RSFC observed in the absence of clinically-significant
comorbid psychiatric diagnosis, as our population was intentionally
truncated on psychiatric severity. These observations, in a truncated
sample, are robust and suggest, if anything, a continuum wherein stu-
dies including a full range of psychiatric severity (e.g., co-occurring
PTSD, depression) could be stronger. As with any set of new findings,
certain limitations were present that may help to guide future research.
First, this study focused exclusively on male cocaine patients. Future
studies may wish to include female participants and other SUDs to
determine the generalizability of our results. Second, our seed-based
analysis considered the amygdala as a singular unit. Future studies will
benefit by examining the independent functions of connectivity within
amygdala subdivisions (laterobasal, centromedial, and superficial) that
may play unique roles in addiction (Roy et al., 2009; Pitkänen et al.,

2000; Russchen et al., 1985; Davis, 2006). Future studies with a larger
sample size would increase sensitivity for detection of differences, en-
abling examinations of amygdala sub-regions.

For this initial study of RSFC in cocaine patients with and without
trauma, we used a single ROI (limbic-striatal mask) and a cluster cor-
rected threshold of p < 0.05 in the group comparison. Our hypotheses
and discussions are thus intentionally limited to circuit-level, rather
than the several interconnected nodes within the mask. This initial
study lays the foundation for future studies with sample sizes that will
enable statistical examination of connectivity with multiple individual
brain regions.

4.4. Concluding remarks

Our results suggest that amygdala-connected neural circuits, as-
sessed with RSFC, may offer a sensitive biomarker of prior trauma for
those with CUD. To our knowledge, this is the first study to demonstrate
enhanced intralimbic connectivity among those with trauma history,
within a sample of CUD patients. This finding has potential clinical
relevance as trauma-exposed SUD individuals’ have greater relapse
rates (Farley et al., 2004; Gil-Rivas et al., 2009; Ouimette et al., 1998),
underscoring the need for treatments to address the special needs of this
population. Our ongoing studies will test whether this biomarker of
enhanced RSFC intralimbic connectivity can predict clinical outcomes,
including drug craving and relapse. Indeed, our findings may serve to
identify who is at greater risk for stress-related relapse − encouraging
development of therapeutic interventions (behavioral or pharmacolo-
gical) that address these critical brain vulnerabilities.
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Table 2

Seed Region Cluster (C) Brain nodes within a priori mask Hemisphere Peak T P value Coordinates

x y z

Left Amygdala
C1 (875 voxels) Amygdala Left 5.89 0 −18 −6 −16

Putamen Left 3.38 0.001 −26 4 6
Pallidum Left 2.86 0.004 −22 −8 −4
Brain stem Left 2.51 0.009 −6 −20 −20
Caudate Left 2.39 0.012 −10 18 −2
Hippocampus Left 2.18 0.018 −28 −22 −14

C2 (558 voxels) Putamen Right 4.33 0 18 16 −4
Caudate Right 2.75 0.005 16 12 6
Insula Right 2.65 0.006 38 −10 4

Right Amygdala
C3 (632 voxels) Thalamus Left 3.68 0 −8 −22 6

Pallidum Left 3.44 0.001 −20 −10 −4
Caudate Left 3.13 0.002 −20 16 12
Putamen Left 2.66 0.006 −26 4 2
Amygdala Left 2.64 0.006 −18 −6 −16

C4 (421 voxels) Parahippocampus Right 2.91 0.003 32 −4 −30
Putamen Right 2.63 0.007 22 6 −8
Caudate Right 2.50 0.009 20 20 4
Amygdala Right 2.34 0.013 22 −6 −16

Note. Trauma and No-Trauma cocaine patient sub-groups differed in amygdala connectivity within an a priori limbic-striatal mask (cluster threshold p<0.05). Shown above are peaks
within the significant clusters with right and left amygdala as seed regions.
C = Cluster.
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